|
""" |
|
Dynamic ResNet from `"Dynamic Domain Generalization" <https://github.com/MetaVisionLab/DDG>`_. |
|
""" |
|
|
|
from typing import Any, List, Type, Union, Callable, Optional |
|
from collections import OrderedDict |
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
from torch.hub import load_state_dict_from_url |
|
|
|
from dassl.modeling.ops import MixStyle, Conv2dDynamic |
|
|
|
from .build import BACKBONE_REGISTRY |
|
from .backbone import Backbone |
|
|
|
__all__ = [ |
|
"resnet18_dynamic", "resnet50_dynamic", "resnet101_dynamic", |
|
"resnet18_dynamic_ms_l123", "resnet18_dynamic_ms_l12", |
|
"resnet18_dynamic_ms_l1", "resnet50_dynamic_ms_l123", |
|
"resnet50_dynamic_ms_l12", "resnet50_dynamic_ms_l1", |
|
"resnet101_dynamic_ms_l123", "resnet101_dynamic_ms_l12", |
|
"resnet101_dynamic_ms_l1" |
|
] |
|
|
|
model_urls = { |
|
"resnet18_dynamic": |
|
"https://csip.fzu.edu.cn/files/models/resnet18_dynamic-074db766.pth", |
|
"resnet50_dynamic": |
|
"https://csip.fzu.edu.cn/files/models/resnet50_dynamic-2c3b0201.pth", |
|
"resnet101_dynamic": |
|
"https://csip.fzu.edu.cn/files/models/resnet101_dynamic-c5f15780.pth", |
|
} |
|
|
|
|
|
def conv3x3( |
|
in_planes: int, |
|
out_planes: int, |
|
stride: int = 1, |
|
groups: int = 1, |
|
dilation: int = 1 |
|
) -> nn.Conv2d: |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation |
|
) |
|
|
|
|
|
def conv3x3_dynamic( |
|
in_planes: int, |
|
out_planes: int, |
|
stride: int = 1, |
|
attention_in_channels: int = None |
|
) -> Conv2dDynamic: |
|
"""3x3 convolution with padding""" |
|
return Conv2dDynamic( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False, |
|
attention_in_channels=attention_in_channels |
|
) |
|
|
|
|
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: |
|
"""1x1 convolution""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=1, stride=stride, bias=False |
|
) |
|
|
|
|
|
def load_state_dict( |
|
model: nn.Module, |
|
state_dict: "OrderedDict[str, Tensor]", |
|
allowed_missing_keys: List = None |
|
): |
|
r"""Copies parameters and buffers from :attr:`state_dict` into |
|
this module and its descendants. If :attr:`strict` is ``True``, then |
|
the keys of :attr:`state_dict` must exactly match the keys returned |
|
by this module's :meth:`~torch.nn.Module.state_dict` function. |
|
|
|
Args: |
|
model (torch.nn.Module): a torch.nn.Module object where state_dict load for. |
|
state_dict (dict): a dict containing parameters and |
|
persistent buffers. |
|
allowed_missing_keys (List, optional): not raise `RuntimeError` if missing_keys |
|
equal to allowed_missing_keys. |
|
|
|
Returns: |
|
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields: |
|
* **missing_keys** is a list of str containing the missing keys |
|
* **unexpected_keys** is a list of str containing the unexpected keys |
|
|
|
Note: |
|
If a parameter or buffer is registered as ``None`` and its corresponding key |
|
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a |
|
``RuntimeError``. |
|
""" |
|
missing_keys, unexpected_keys = model.load_state_dict( |
|
state_dict, strict=allowed_missing_keys is None |
|
) |
|
|
|
msgs: List[str] = [] |
|
raise_error = False |
|
if len(unexpected_keys) > 0: |
|
raise_error = True |
|
msgs.insert( |
|
0, "Unexpected key(s) in state_dict: {}. ".format( |
|
", ".join("'{}'".format(k) for k in unexpected_keys) |
|
) |
|
) |
|
if len(missing_keys) > 0: |
|
if allowed_missing_keys is None or sorted(missing_keys) != sorted( |
|
allowed_missing_keys |
|
): |
|
raise_error = True |
|
msgs.insert( |
|
0, "Missing key(s) in state_dict: {}. ".format( |
|
", ".join("'{}'".format(k) for k in missing_keys) |
|
) |
|
) |
|
if raise_error: |
|
raise RuntimeError( |
|
"Error(s) in loading state_dict for {}:\n\t{}".format( |
|
model.__class__.__name__, "\n\t".join(msgs) |
|
) |
|
) |
|
if len(msgs) > 0: |
|
print( |
|
"\nInfo(s) in loading state_dict for {}:\n\t{}".format( |
|
model.__class__.__name__, "\n\t".join(msgs) |
|
) |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError( |
|
"BasicBlock only supports groups=1 and base_width=64" |
|
) |
|
if dilation > 1: |
|
raise NotImplementedError( |
|
"Dilation > 1 not supported in BasicBlock" |
|
) |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width/64.)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class BasicBlockDynamic(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(BasicBlockDynamic, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError( |
|
"BasicBlock only supports groups=1 and base_width=64" |
|
) |
|
if dilation > 1: |
|
raise NotImplementedError( |
|
"Dilation > 1 not supported in BasicBlock" |
|
) |
|
|
|
self.conv1 = conv3x3_dynamic( |
|
inplanes, planes, stride, attention_in_channels=inplanes |
|
) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3_dynamic( |
|
planes, planes, attention_in_channels=inplanes |
|
) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x, attention_x=x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out, attention_x=x) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class BottleneckDynamic(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None |
|
) -> None: |
|
super(BottleneckDynamic, self).__init__() |
|
if groups != 1: |
|
raise ValueError("BottleneckDynamic only supports groups=1") |
|
if dilation > 1: |
|
raise NotImplementedError( |
|
"Dilation > 1 not supported in BottleneckDynamic" |
|
) |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width/64.)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3_dynamic( |
|
width, width, stride, attention_in_channels=inplanes |
|
) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out, attention_x=x) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(Backbone): |
|
|
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck, BasicBlockDynamic, |
|
BottleneckDynamic]], |
|
layers: List[int], |
|
has_fc: bool = True, |
|
num_classes: int = 1000, |
|
zero_init_residual: bool = False, |
|
groups: int = 1, |
|
width_per_group: int = 64, |
|
replace_stride_with_dilation: Optional[List[bool]] = None, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
ms_class=None, |
|
ms_layers=None, |
|
ms_p=0.5, |
|
ms_a=0.1 |
|
) -> None: |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}". |
|
format(replace_stride_with_dilation) |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d( |
|
3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False |
|
) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer( |
|
block, |
|
128, |
|
layers[1], |
|
stride=2, |
|
dilate=replace_stride_with_dilation[0] |
|
) |
|
self.layer3 = self._make_layer( |
|
block, |
|
256, |
|
layers[2], |
|
stride=2, |
|
dilate=replace_stride_with_dilation[1] |
|
) |
|
self.layer4 = self._make_layer( |
|
block, |
|
512, |
|
layers[3], |
|
stride=2, |
|
dilate=replace_stride_with_dilation[2] |
|
) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
self.has_fc = has_fc |
|
self._out_features = 512 * block.expansion |
|
if has_fc: |
|
self.fc = nn.Linear(self.out_features, num_classes) |
|
self._out_features = num_classes |
|
|
|
if ms_class is not None and ms_layers is not None: |
|
self.ms_class = ms_class(p=ms_p, alpha=ms_a) |
|
for layer in ms_layers: |
|
assert layer in ["layer1", "layer2", "layer3"] |
|
self.ms_layers = ms_layers |
|
else: |
|
self.ms_class = None |
|
self.ms_layers = [] |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_( |
|
m.weight, mode="fan_out", nonlinearity="relu" |
|
) |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
dilate: bool = False |
|
) -> nn.Sequential: |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, planes, stride, downsample, self.groups, |
|
self.base_width, previous_dilation, norm_layer |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
if "layer1" in self.ms_layers: |
|
x = self.ms_class(x) |
|
x = self.layer2(x) |
|
if "layer2" in self.ms_layers: |
|
x = self.ms_class(x) |
|
x = self.layer3(x) |
|
if "layer3" in self.ms_layers: |
|
x = self.ms_class(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
if self.has_fc: |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
|
|
def _resnet( |
|
arch: str, block: Type[Union[BasicBlock, Bottleneck, BasicBlockDynamic, |
|
BottleneckDynamic]], layers: List[int], |
|
pretrained: bool, progress: bool, **kwargs: Any |
|
) -> ResNet: |
|
model = ResNet(block, layers, **kwargs) |
|
if pretrained: |
|
state_dict = load_state_dict_from_url( |
|
model_urls[arch], progress=progress |
|
) |
|
|
|
removed_keys = model.has_fc is False or ( |
|
model.has_fc is True and model.out_features != 1000 |
|
) |
|
removed_keys = ["fc.weight", "fc.bias"] if removed_keys else [] |
|
for key in removed_keys: |
|
state_dict.pop(key) |
|
|
|
allowed_missing_keys = removed_keys if model.has_fc else None |
|
load_state_dict(model, state_dict, allowed_missing_keys) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_dynamic(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet18_dynamic", |
|
BasicBlockDynamic, [2, 2, 2, 2], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_dynamic(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet50_dynamic", |
|
BottleneckDynamic, [3, 4, 6, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_dynamic(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet101_dynamic", |
|
BottleneckDynamic, [3, 4, 23, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet18_dynamic", |
|
BasicBlockDynamic, [2, 2, 2, 2], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2", "layer3"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet18_dynamic", |
|
BasicBlockDynamic, [2, 2, 2, 2], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet18_dynamic", |
|
BasicBlockDynamic, [2, 2, 2, 2], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet50_dynamic", |
|
BottleneckDynamic, [3, 4, 6, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2", "layer3"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet50_dynamic", |
|
BottleneckDynamic, [3, 4, 6, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet50_dynamic", |
|
BottleneckDynamic, [3, 4, 6, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_dynamic_ms_l123(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet101_dynamic", |
|
BottleneckDynamic, [3, 4, 23, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2", "layer3"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_dynamic_ms_l12(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet101_dynamic", |
|
BottleneckDynamic, [3, 4, 23, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2"] |
|
) |
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_dynamic_ms_l1(pretrained=True, **kwargs) -> ResNet: |
|
model = _resnet( |
|
"resnet101_dynamic", |
|
BottleneckDynamic, [3, 4, 23, 3], |
|
pretrained=pretrained, |
|
progress=True, |
|
has_fc=False, |
|
ms_class=MixStyle, |
|
ms_layers=["layer1"] |
|
) |
|
return model |
|
|