|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
|
|
from .build import BACKBONE_REGISTRY |
|
from .backbone import Backbone |
|
|
|
model_urls = { |
|
"resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth", |
|
"resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", |
|
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", |
|
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", |
|
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super().__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d( |
|
planes, planes * self.expansion, kernel_size=1, bias=False |
|
) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(Backbone): |
|
|
|
def __init__( |
|
self, |
|
block, |
|
layers, |
|
ms_class=None, |
|
ms_layers=[], |
|
ms_p=0.5, |
|
ms_a=0.1, |
|
**kwargs |
|
): |
|
self.inplanes = 64 |
|
super().__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d( |
|
3, 64, kernel_size=7, stride=2, padding=3, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.global_avgpool = nn.AdaptiveAvgPool2d(1) |
|
|
|
self._out_features = 512 * block.expansion |
|
|
|
self.mixstyle = None |
|
if ms_layers: |
|
self.mixstyle = ms_class(p=ms_p, alpha=ms_a) |
|
for layer_name in ms_layers: |
|
assert layer_name in ["layer1", "layer2", "layer3"] |
|
print( |
|
f"Insert {self.mixstyle.__class__.__name__} after {ms_layers}" |
|
) |
|
self.ms_layers = ms_layers |
|
|
|
self._init_params() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _init_params(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_( |
|
m.weight, mode="fan_out", nonlinearity="relu" |
|
) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm1d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def featuremaps(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
x = self.layer1(x) |
|
if "layer1" in self.ms_layers: |
|
x = self.mixstyle(x) |
|
x = self.layer2(x) |
|
if "layer2" in self.ms_layers: |
|
x = self.mixstyle(x) |
|
x = self.layer3(x) |
|
if "layer3" in self.ms_layers: |
|
x = self.mixstyle(x) |
|
return self.layer4(x) |
|
|
|
def forward(self, x): |
|
f = self.featuremaps(x) |
|
v = self.global_avgpool(f) |
|
return v.view(v.size(0), -1) |
|
|
|
|
|
def init_pretrained_weights(model, model_url): |
|
pretrain_dict = model_zoo.load_url(model_url) |
|
model.load_state_dict(pretrain_dict, strict=False) |
|
|
|
|
|
""" |
|
Residual network configurations: |
|
-- |
|
resnet18: block=BasicBlock, layers=[2, 2, 2, 2] |
|
resnet34: block=BasicBlock, layers=[3, 4, 6, 3] |
|
resnet50: block=Bottleneck, layers=[3, 4, 6, 3] |
|
resnet101: block=Bottleneck, layers=[3, 4, 23, 3] |
|
resnet152: block=Bottleneck, layers=[3, 8, 36, 3] |
|
""" |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18(pretrained=True, **kwargs): |
|
model = ResNet(block=BasicBlock, layers=[2, 2, 2, 2]) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet34(pretrained=True, **kwargs): |
|
model = ResNet(block=BasicBlock, layers=[3, 4, 6, 3]) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet34"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50(pretrained=True, **kwargs): |
|
model = ResNet(block=Bottleneck, layers=[3, 4, 6, 3]) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101(pretrained=True, **kwargs): |
|
model = ResNet(block=Bottleneck, layers=[3, 4, 23, 3]) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet152(pretrained=True, **kwargs): |
|
model = ResNet(block=Bottleneck, layers=[3, 8, 36, 3]) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet152"]) |
|
|
|
return model |
|
|
|
|
|
""" |
|
Residual networks with mixstyle |
|
""" |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_ms_l123(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=BasicBlock, |
|
layers=[2, 2, 2, 2], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2", "layer3"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_ms_l12(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=BasicBlock, |
|
layers=[2, 2, 2, 2], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_ms_l1(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=BasicBlock, |
|
layers=[2, 2, 2, 2], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1"] |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_ms_l123(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 6, 3], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2", "layer3"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_ms_l12(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 6, 3], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_ms_l1(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 6, 3], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1"] |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_ms_l123(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 23, 3], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2", "layer3"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_ms_l12(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 23, 3], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1", "layer2"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_ms_l1(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import MixStyle |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 23, 3], |
|
ms_class=MixStyle, |
|
ms_layers=["layer1"] |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|
|
|
|
""" |
|
Residual networks with efdmix |
|
""" |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_efdmix_l123(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=BasicBlock, |
|
layers=[2, 2, 2, 2], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1", "layer2", "layer3"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_efdmix_l12(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=BasicBlock, |
|
layers=[2, 2, 2, 2], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1", "layer2"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet18_efdmix_l1(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=BasicBlock, |
|
layers=[2, 2, 2, 2], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1"] |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet18"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_efdmix_l123(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 6, 3], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1", "layer2", "layer3"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_efdmix_l12(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 6, 3], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1", "layer2"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet50_efdmix_l1(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 6, 3], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1"] |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet50"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_efdmix_l123(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 23, 3], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1", "layer2", "layer3"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_efdmix_l12(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 23, 3], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1", "layer2"], |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def resnet101_efdmix_l1(pretrained=True, **kwargs): |
|
from dassl.modeling.ops import EFDMix |
|
|
|
model = ResNet( |
|
block=Bottleneck, |
|
layers=[3, 4, 23, 3], |
|
ms_class=EFDMix, |
|
ms_layers=["layer1"] |
|
) |
|
|
|
if pretrained: |
|
init_pretrained_weights(model, model_urls["resnet101"]) |
|
|
|
return model |
|
|