|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .build import BACKBONE_REGISTRY |
|
from .backbone import Backbone |
|
|
|
|
|
class PreActBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super().__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = nn.Conv2d( |
|
in_planes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
|
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
self.expansion * planes, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(x)) |
|
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x |
|
out = self.conv1(out) |
|
out = self.conv2(F.relu(self.bn2(out))) |
|
out += shortcut |
|
return out |
|
|
|
|
|
class PreActBottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super().__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False |
|
) |
|
self.bn3 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d( |
|
planes, self.expansion * planes, kernel_size=1, bias=False |
|
) |
|
|
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
self.expansion * planes, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(x)) |
|
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x |
|
out = self.conv1(out) |
|
out = self.conv2(F.relu(self.bn2(out))) |
|
out = self.conv3(F.relu(self.bn3(out))) |
|
out += shortcut |
|
return out |
|
|
|
|
|
class PreActResNet(Backbone): |
|
|
|
def __init__(self, block, num_blocks): |
|
super().__init__() |
|
self.in_planes = 64 |
|
|
|
self.conv1 = nn.Conv2d( |
|
3, 64, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
|
|
self._out_features = 512 * block.expansion |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1] * (num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
return out |
|
|
|
|
|
""" |
|
Preact-ResNet18 was used for the CIFAR10 and |
|
SVHN datasets (both are SSL tasks) in |
|
|
|
- Wang et al. Semi-Supervised Learning by |
|
Augmented Distribution Alignment. ICCV 2019. |
|
""" |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def preact_resnet18(**kwargs): |
|
return PreActResNet(PreActBlock, [2, 2, 2, 2]) |
|
|