|
""" |
|
This model is built based on |
|
https://github.com/ricvolpi/generalize-unseen-domains/blob/master/model.py |
|
""" |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
from dassl.utils import init_network_weights |
|
|
|
from .build import BACKBONE_REGISTRY |
|
from .backbone import Backbone |
|
|
|
|
|
class CNN(Backbone): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(3, 64, 5) |
|
self.conv2 = nn.Conv2d(64, 128, 5) |
|
self.fc3 = nn.Linear(5 * 5 * 128, 1024) |
|
self.fc4 = nn.Linear(1024, 1024) |
|
|
|
self._out_features = 1024 |
|
|
|
def _check_input(self, x): |
|
H, W = x.shape[2:] |
|
assert ( |
|
H == 32 and W == 32 |
|
), "Input to network must be 32x32, " "but got {}x{}".format(H, W) |
|
|
|
def forward(self, x): |
|
self._check_input(x) |
|
x = self.conv1(x) |
|
x = F.relu(x) |
|
x = F.max_pool2d(x, 2) |
|
|
|
x = self.conv2(x) |
|
x = F.relu(x) |
|
x = F.max_pool2d(x, 2) |
|
|
|
x = x.view(x.size(0), -1) |
|
|
|
x = self.fc3(x) |
|
x = F.relu(x) |
|
|
|
x = self.fc4(x) |
|
x = F.relu(x) |
|
|
|
return x |
|
|
|
|
|
@BACKBONE_REGISTRY.register() |
|
def cnn_digitsingle(**kwargs): |
|
model = CNN() |
|
init_network_weights(model, init_type="kaiming") |
|
return model |
|
|