|
import torch |
|
from torch.nn import functional as F |
|
|
|
from dassl.engine import TRAINER_REGISTRY, TrainerXU |
|
from dassl.modeling.ops import mixup |
|
from dassl.modeling.ops.utils import ( |
|
sharpen_prob, create_onehot, linear_rampup, shuffle_index |
|
) |
|
|
|
|
|
@TRAINER_REGISTRY.register() |
|
class MixMatch(TrainerXU): |
|
"""MixMatch: A Holistic Approach to Semi-Supervised Learning. |
|
|
|
https://arxiv.org/abs/1905.02249. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super().__init__(cfg) |
|
self.weight_u = cfg.TRAINER.MIXMATCH.WEIGHT_U |
|
self.temp = cfg.TRAINER.MIXMATCH.TEMP |
|
self.beta = cfg.TRAINER.MIXMATCH.MIXUP_BETA |
|
self.rampup = cfg.TRAINER.MIXMATCH.RAMPUP |
|
|
|
def check_cfg(self, cfg): |
|
assert cfg.DATALOADER.K_TRANSFORMS > 1 |
|
|
|
def forward_backward(self, batch_x, batch_u): |
|
input_x, label_x, input_u = self.parse_batch_train(batch_x, batch_u) |
|
num_x = input_x.shape[0] |
|
|
|
global_step = self.batch_idx + self.epoch * self.num_batches |
|
weight_u = self.weight_u * linear_rampup(global_step, self.rampup) |
|
|
|
|
|
with torch.no_grad(): |
|
output_u = 0 |
|
for input_ui in input_u: |
|
output_ui = F.softmax(self.model(input_ui), 1) |
|
output_u += output_ui |
|
output_u /= len(input_u) |
|
label_u = sharpen_prob(output_u, self.temp) |
|
label_u = [label_u] * len(input_u) |
|
label_u = torch.cat(label_u, 0) |
|
input_u = torch.cat(input_u, 0) |
|
|
|
|
|
input_xu = torch.cat([input_x, input_u], 0) |
|
label_xu = torch.cat([label_x, label_u], 0) |
|
input_xu, label_xu = shuffle_index(input_xu, label_xu) |
|
|
|
|
|
input_x, label_x = mixup( |
|
input_x, |
|
input_xu[:num_x], |
|
label_x, |
|
label_xu[:num_x], |
|
self.beta, |
|
preserve_order=True, |
|
) |
|
|
|
input_u, label_u = mixup( |
|
input_u, |
|
input_xu[num_x:], |
|
label_u, |
|
label_xu[num_x:], |
|
self.beta, |
|
preserve_order=True, |
|
) |
|
|
|
|
|
output_x = F.softmax(self.model(input_x), 1) |
|
loss_x = (-label_x * torch.log(output_x + 1e-5)).sum(1).mean() |
|
|
|
output_u = F.softmax(self.model(input_u), 1) |
|
loss_u = ((label_u - output_u)**2).mean() |
|
|
|
loss = loss_x + loss_u*weight_u |
|
self.model_backward_and_update(loss) |
|
|
|
loss_summary = {"loss_x": loss_x.item(), "loss_u": loss_u.item()} |
|
|
|
if (self.batch_idx + 1) == self.num_batches: |
|
self.update_lr() |
|
|
|
return loss_summary |
|
|
|
def parse_batch_train(self, batch_x, batch_u): |
|
input_x = batch_x["img"][0] |
|
label_x = batch_x["label"] |
|
label_x = create_onehot(label_x, self.num_classes) |
|
input_u = batch_u["img"] |
|
|
|
input_x = input_x.to(self.device) |
|
label_x = label_x.to(self.device) |
|
input_u = [input_ui.to(self.device) for input_ui in input_u] |
|
|
|
return input_x, label_x, input_u |
|
|