|
import torch |
|
from torch.nn import functional as F |
|
|
|
from dassl.optim import build_optimizer, build_lr_scheduler |
|
from dassl.utils import count_num_param |
|
from dassl.engine import TRAINER_REGISTRY, TrainerX |
|
from dassl.modeling import build_network |
|
from dassl.engine.trainer import SimpleNet |
|
|
|
|
|
@TRAINER_REGISTRY.register() |
|
class DDAIG(TrainerX): |
|
"""Deep Domain-Adversarial Image Generation. |
|
|
|
https://arxiv.org/abs/2003.06054. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super().__init__(cfg) |
|
self.lmda = cfg.TRAINER.DDAIG.LMDA |
|
self.clamp = cfg.TRAINER.DDAIG.CLAMP |
|
self.clamp_min = cfg.TRAINER.DDAIG.CLAMP_MIN |
|
self.clamp_max = cfg.TRAINER.DDAIG.CLAMP_MAX |
|
self.warmup = cfg.TRAINER.DDAIG.WARMUP |
|
self.alpha = cfg.TRAINER.DDAIG.ALPHA |
|
|
|
def build_model(self): |
|
cfg = self.cfg |
|
|
|
print("Building F") |
|
self.F = SimpleNet(cfg, cfg.MODEL, self.num_classes) |
|
self.F.to(self.device) |
|
print("# params: {:,}".format(count_num_param(self.F))) |
|
self.optim_F = build_optimizer(self.F, cfg.OPTIM) |
|
self.sched_F = build_lr_scheduler(self.optim_F, cfg.OPTIM) |
|
self.register_model("F", self.F, self.optim_F, self.sched_F) |
|
|
|
print("Building D") |
|
self.D = SimpleNet(cfg, cfg.MODEL, self.num_source_domains) |
|
self.D.to(self.device) |
|
print("# params: {:,}".format(count_num_param(self.D))) |
|
self.optim_D = build_optimizer(self.D, cfg.OPTIM) |
|
self.sched_D = build_lr_scheduler(self.optim_D, cfg.OPTIM) |
|
self.register_model("D", self.D, self.optim_D, self.sched_D) |
|
|
|
print("Building G") |
|
self.G = build_network(cfg.TRAINER.DDAIG.G_ARCH, verbose=cfg.VERBOSE) |
|
self.G.to(self.device) |
|
print("# params: {:,}".format(count_num_param(self.G))) |
|
self.optim_G = build_optimizer(self.G, cfg.OPTIM) |
|
self.sched_G = build_lr_scheduler(self.optim_G, cfg.OPTIM) |
|
self.register_model("G", self.G, self.optim_G, self.sched_G) |
|
|
|
def forward_backward(self, batch): |
|
input, label, domain = self.parse_batch_train(batch) |
|
|
|
|
|
|
|
|
|
input_p = self.G(input, lmda=self.lmda) |
|
if self.clamp: |
|
input_p = torch.clamp( |
|
input_p, min=self.clamp_min, max=self.clamp_max |
|
) |
|
loss_g = 0 |
|
|
|
loss_g += F.cross_entropy(self.F(input_p), label) |
|
|
|
loss_g -= F.cross_entropy(self.D(input_p), domain) |
|
self.model_backward_and_update(loss_g, "G") |
|
|
|
|
|
with torch.no_grad(): |
|
input_p = self.G(input, lmda=self.lmda) |
|
if self.clamp: |
|
input_p = torch.clamp( |
|
input_p, min=self.clamp_min, max=self.clamp_max |
|
) |
|
|
|
|
|
|
|
|
|
loss_f = F.cross_entropy(self.F(input), label) |
|
if (self.epoch + 1) > self.warmup: |
|
loss_fp = F.cross_entropy(self.F(input_p), label) |
|
loss_f = (1.0 - self.alpha) * loss_f + self.alpha * loss_fp |
|
self.model_backward_and_update(loss_f, "F") |
|
|
|
|
|
|
|
|
|
loss_d = F.cross_entropy(self.D(input), domain) |
|
self.model_backward_and_update(loss_d, "D") |
|
|
|
loss_summary = { |
|
"loss_g": loss_g.item(), |
|
"loss_f": loss_f.item(), |
|
"loss_d": loss_d.item(), |
|
} |
|
|
|
if (self.batch_idx + 1) == self.num_batches: |
|
self.update_lr() |
|
|
|
return loss_summary |
|
|
|
def model_inference(self, input): |
|
return self.F(input) |
|
|