|
import copy |
|
from torch.nn import functional as F |
|
|
|
from dassl.engine import TRAINER_REGISTRY, TrainerXU |
|
from dassl.metrics import compute_accuracy |
|
from dassl.modeling.ops.utils import sigmoid_rampup, ema_model_update |
|
|
|
|
|
@TRAINER_REGISTRY.register() |
|
class SE(TrainerXU): |
|
"""Self-ensembling for visual domain adaptation. |
|
|
|
https://arxiv.org/abs/1706.05208. |
|
""" |
|
|
|
def __init__(self, cfg): |
|
super().__init__(cfg) |
|
self.ema_alpha = cfg.TRAINER.SE.EMA_ALPHA |
|
self.conf_thre = cfg.TRAINER.SE.CONF_THRE |
|
self.rampup = cfg.TRAINER.SE.RAMPUP |
|
|
|
self.teacher = copy.deepcopy(self.model) |
|
self.teacher.train() |
|
for param in self.teacher.parameters(): |
|
param.requires_grad_(False) |
|
|
|
def check_cfg(self, cfg): |
|
assert cfg.DATALOADER.K_TRANSFORMS == 2 |
|
|
|
def forward_backward(self, batch_x, batch_u): |
|
global_step = self.batch_idx + self.epoch * self.num_batches |
|
parsed = self.parse_batch_train(batch_x, batch_u) |
|
input_x, label_x, input_u1, input_u2 = parsed |
|
|
|
logit_x = self.model(input_x) |
|
loss_x = F.cross_entropy(logit_x, label_x) |
|
|
|
prob_u = F.softmax(self.model(input_u1), 1) |
|
t_prob_u = F.softmax(self.teacher(input_u2), 1) |
|
loss_u = ((prob_u - t_prob_u)**2).sum(1) |
|
|
|
if self.conf_thre: |
|
max_prob = t_prob_u.max(1)[0] |
|
mask = (max_prob > self.conf_thre).float() |
|
loss_u = (loss_u * mask).mean() |
|
else: |
|
weight_u = sigmoid_rampup(global_step, self.rampup) |
|
loss_u = loss_u.mean() * weight_u |
|
|
|
loss = loss_x + loss_u |
|
self.model_backward_and_update(loss) |
|
|
|
ema_alpha = min(1 - 1 / (global_step+1), self.ema_alpha) |
|
ema_model_update(self.model, self.teacher, ema_alpha) |
|
|
|
loss_summary = { |
|
"loss_x": loss_x.item(), |
|
"acc_x": compute_accuracy(logit_x, label_x)[0].item(), |
|
"loss_u": loss_u.item(), |
|
} |
|
|
|
if (self.batch_idx + 1) == self.num_batches: |
|
self.update_lr() |
|
|
|
return loss_summary |
|
|
|
def parse_batch_train(self, batch_x, batch_u): |
|
input_x = batch_x["img"][0] |
|
label_x = batch_x["label"] |
|
input_u = batch_u["img"] |
|
input_u1, input_u2 = input_u |
|
|
|
input_x = input_x.to(self.device) |
|
label_x = label_x.to(self.device) |
|
input_u1 = input_u1.to(self.device) |
|
input_u2 = input_u2.to(self.device) |
|
|
|
return input_x, label_x, input_u1, input_u2 |
|
|