Update README.md
Browse files
README.md
CHANGED
@@ -6,17 +6,121 @@ tags:
|
|
6 |
- unsloth
|
7 |
- gemma2
|
8 |
- trl
|
9 |
-
license:
|
10 |
language:
|
11 |
-
-
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
# Uploaded model
|
15 |
|
16 |
- **Developed by:** tomo1222
|
17 |
-
- **License:**
|
18 |
- **Finetuned from model :** tomo1222/gemma-2-27b-bf16-4bit
|
19 |
|
20 |
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- unsloth
|
7 |
- gemma2
|
8 |
- trl
|
9 |
+
license: gemma
|
10 |
language:
|
11 |
+
- jp
|
12 |
+
datasets:
|
13 |
+
- llm-jp/magpie-sft-v1.0
|
14 |
+
- tomo1222/Japanese-QA111dataset
|
15 |
---
|
16 |
|
17 |
# Uploaded model
|
18 |
|
19 |
- **Developed by:** tomo1222
|
20 |
+
- **License:** Gemma
|
21 |
- **Finetuned from model :** tomo1222/gemma-2-27b-bf16-4bit
|
22 |
|
23 |
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
24 |
|
25 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
26 |
+
|
27 |
+
# output code
|
28 |
+
|
29 |
+
## library
|
30 |
+
```bash
|
31 |
+
pip install unsloth
|
32 |
+
pip install --no-deps --upgrade "flash-attn>=2.6.3"
|
33 |
+
pip install -U ragatouille
|
34 |
+
pip install fugashi unidic-lite
|
35 |
+
```
|
36 |
+
|
37 |
+
### inference sample
|
38 |
+
```python
|
39 |
+
from datasets import concatenate_datasets, load_dataset
|
40 |
+
from unsloth import FastLanguageModel
|
41 |
+
import random
|
42 |
+
import json
|
43 |
+
|
44 |
+
from huggingface_hub import login
|
45 |
+
from google.colab import userdata
|
46 |
+
login(userdata.get('HFtoken'))
|
47 |
+
|
48 |
+
|
49 |
+
with open("elyza-tasks-100-TV_0.jsonl","r",encoding='utf-8') as f:
|
50 |
+
tasks = [json.loads(l) for l in f.readlines()]
|
51 |
+
|
52 |
+
model_name = "tomo1222/Gemma2-27b-ft-jp-r64_alpha64"
|
53 |
+
|
54 |
+
|
55 |
+
max_seq_length = 4096
|
56 |
+
|
57 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
58 |
+
model_name = model_name,
|
59 |
+
max_seq_length = max_seq_length,
|
60 |
+
dtype = None,
|
61 |
+
load_in_4bit = True,
|
62 |
+
)
|
63 |
+
|
64 |
+
tokenizer.chat_template = """
|
65 |
+
{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}
|
66 |
+
"""
|
67 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
68 |
+
|
69 |
+
with open("Japanese-QA111dataset.jsonl","r",encoding='utf-8') as f:
|
70 |
+
ref_tasks = [json.loads(l) for l in f.readlines()]
|
71 |
+
ref_tasks_input =[task["input"] for task in ref_tasks]
|
72 |
+
|
73 |
+
dic = {}
|
74 |
+
dic_input = {}
|
75 |
+
for i, task in enumerate(ref_tasks):
|
76 |
+
dic[ref_tasks_input[i]] = task["output"]
|
77 |
+
dic_input[ref_tasks_input[i]] = task["input"]
|
78 |
+
|
79 |
+
"""# 2. RAGのロード"""
|
80 |
+
|
81 |
+
from ragatouille import RAGPretrainedModel
|
82 |
+
RAG = RAGPretrainedModel.from_pretrained("bclavie/JaColBERTv2")
|
83 |
+
RAG.encode(ref_tasks_input)
|
84 |
+
|
85 |
+
def search_ref_input(input, k=10):
|
86 |
+
retreived=RAG.search_encoded_docs(query=input,k=k)
|
87 |
+
print(retreived)
|
88 |
+
text ="質問・文章をよく読んで、正確で親切な回答を書きなさい。\n"
|
89 |
+
for data in retreived[::-1]: # inverse order
|
90 |
+
key = data["content"]
|
91 |
+
output = dic[key]
|
92 |
+
input = dic_input[key]
|
93 |
+
text+="### 質問:\n"+input+"\n\n### 回答:\n"+output+"\n\n\n"
|
94 |
+
return text
|
95 |
+
|
96 |
+
"""# Prompt"""
|
97 |
+
|
98 |
+
output_data=[]
|
99 |
+
|
100 |
+
for i, task in enumerate(tasks):
|
101 |
+
text = search_ref_input(task["input"],16)+f"### 質問:\n{task['input']}\n\n### 回答:\n"
|
102 |
+
print(task["input"])
|
103 |
+
inputs = tokenizer(text, return_tensors="pt").to("cuda")
|
104 |
+
print(len(inputs['input_ids'][0]))
|
105 |
+
output = model.generate(**inputs, max_new_tokens=1024,repetition_penalty=1.2,use_cache=True,
|
106 |
+
bad_words_ids = [tokenizer.encode("質問", add_special_tokens=False),
|
107 |
+
tokenizer.encode("###", add_special_tokens=False),
|
108 |
+
tokenizer.encode("#", add_special_tokens=False),
|
109 |
+
tokenizer.encode("##", add_special_tokens=False),
|
110 |
+
tokenizer.encode("---", add_special_tokens=False),
|
111 |
+
tokenizer.encode("<h3>", add_special_tokens=False),
|
112 |
+
tokenizer.encode("filepath", add_special_tokens=False),
|
113 |
+
tokenizer.encode("> ", add_special_tokens=False),
|
114 |
+
]
|
115 |
+
)
|
116 |
+
|
117 |
+
output_text = tokenizer.decode(output[0][inputs.input_ids.size(1):], skip_special_tokens=True).strip()
|
118 |
+
print(i,output_text)
|
119 |
+
print("---")
|
120 |
+
output_data.append({"task_id":i,"output":output_text})
|
121 |
+
|
122 |
+
with open("output.jsonl","w",encoding="utf-8") as f:
|
123 |
+
for result in output_data:
|
124 |
+
json.dump(result, f, ensure_ascii=False)
|
125 |
+
f.write('\n')
|
126 |
+
```
|