video-search / handler.py
tomiwa1a's picture
use device_number for setting GPU
010ad9e
"""
https://huggingface.co/tomiwa1a/video-search
"""
from typing import Dict
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
import whisper
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
import pytube
import time
class EndpointHandler():
# load the model
WHISPER_MODEL_NAME = "tiny.en"
SENTENCE_TRANSFORMER_MODEL_NAME = "multi-qa-mpnet-base-dot-v1"
QUESTION_ANSWER_MODEL_NAME = "vblagoje/bart_lfqa"
SUMMARIZER_MODEL_NAME = "philschmid/bart-large-cnn-samsum"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device_number = 0 if torch.cuda.is_available() else -1
def __init__(self, path=""):
device = "cuda" if torch.cuda.is_available() else "cpu"
device_number = 0 if torch.cuda.is_available() else -1
print(f'whisper and question_answer_model will use: {device}')
print(f'whisper and question_answer_model will use device_number: {device_number}')
t0 = time.time()
self.whisper_model = whisper.load_model(self.WHISPER_MODEL_NAME).to(device_number)
t1 = time.time()
total = t1 - t0
print(f'Finished loading whisper_model in {total} seconds')
t0 = time.time()
self.sentence_transformer_model = SentenceTransformer(self.SENTENCE_TRANSFORMER_MODEL_NAME)
t1 = time.time()
total = t1 - t0
print(f'Finished loading sentence_transformer_model in {total} seconds')
t0 = time.time()
self.summarizer = pipeline("summarization", model=self.SUMMARIZER_MODEL_NAME, device=device_number)
t1 = time.time()
total = t1 - t0
print(f'Finished loading summarizer in {total} seconds')
self.question_answer_tokenizer = AutoTokenizer.from_pretrained(self.QUESTION_ANSWER_MODEL_NAME)
t0 = time.time()
self.question_answer_model = AutoModelForSeq2SeqLM.from_pretrained \
(self.QUESTION_ANSWER_MODEL_NAME).to(device_number)
t1 = time.time()
total = t1 - t0
print(f'Finished loading question_answer_model in {total} seconds')
def __call__(self, data: Dict[str, str]) -> Dict:
"""
Args:
data (:obj:):
includes the URL to video for transcription
Return:
A :obj:`dict`:. transcribed dict
"""
# process input
print('data', data)
if "inputs" not in data:
raise Exception(f"data is missing 'inputs' key which EndpointHandler expects. Received: {data}"
f" See: https://huggingface.co/docs/inference-endpoints/guides/custom_handler#2-create-endpointhandler-cp")
video_url = data.pop("video_url", None)
query = data.pop("query", None)
long_form_answer = data.pop("long_form_answer", None)
summarize = data.pop("summarize", False)
encoded_segments = {}
if video_url:
video_with_transcript = self.transcribe_video(video_url)
video_with_transcript['transcript']['transcription_source'] = f"whisper_{self.WHISPER_MODEL_NAME}"
encode_transcript = data.pop("encode_transcript", True)
if encode_transcript:
encoded_segments = self.combine_transcripts(video_with_transcript)
encoded_segments = {
"encoded_segments": self.encode_sentences(encoded_segments)
}
return {
**video_with_transcript,
**encoded_segments
}
elif summarize:
summary = self.summarize_video(data["segments"])
return {"summary": summary}
elif query:
if long_form_answer:
context = data.pop("context", None)
answer = self.generate_answer(query, context)
response = {
"answer": answer
}
return response
else:
query = [{"text": query, "id": ""}] if isinstance(query, str) else query
encoded_segments = self.encode_sentences(query)
response = {
"encoded_segments": encoded_segments
}
return response
else:
return {
"error": "'video_url' or 'query' must be provided"
}
def transcribe_video(self, video_url):
decode_options = {
# Set language to None to support multilingual,
# but it will take longer to process while it detects the language.
# Realized this by running in verbose mode and seeing how much time
# was spent on the decoding language step
"language": "en",
"verbose": True
}
yt = pytube.YouTube(video_url)
video_info = {
'id': yt.video_id,
'thumbnail': yt.thumbnail_url,
'title': yt.title,
'views': yt.views,
'length': yt.length,
# Althhough, this might seem redundant since we already have id
# but it allows the link to the video be accessed in 1-click in the API response
'url': f"https://www.youtube.com/watch?v={yt.video_id}"
}
stream = yt.streams.filter(only_audio=True)[0]
path_to_audio = f"{yt.video_id}.mp3"
stream.download(filename=path_to_audio)
t0 = time.time()
transcript = self.whisper_model.transcribe(path_to_audio, **decode_options)
t1 = time.time()
for segment in transcript['segments']:
# Remove the tokens array, it makes the response too verbose
segment.pop('tokens', None)
total = t1 - t0
print(f'Finished transcription in {total} seconds')
# postprocess the prediction
return {"transcript": transcript, 'video': video_info}
def encode_sentences(self, transcripts, batch_size=64):
"""
Encoding all of our segments at once or storing them locally would require too much compute or memory.
So we do it in batches of 64
:param transcripts:
:param batch_size:
:return:
"""
# loop through in batches of 64
all_batches = []
for i in tqdm(range(0, len(transcripts), batch_size)):
# find end position of batch (for when we hit end of data)
i_end = min(len(transcripts), i + batch_size)
# extract the metadata like text, start/end positions, etc
batch_meta = [{
**row
} for row in transcripts[i:i_end]]
# extract only text to be encoded by embedding model
batch_text = [
row['text'] for row in batch_meta
]
# create the embedding vectors
batch_vectors = self.sentence_transformer_model.encode(batch_text).tolist()
batch_details = [
{
**batch_meta[x],
'vectors': batch_vectors[x]
} for x in range(0, len(batch_meta))
]
all_batches.extend(batch_details)
return all_batches
def summarize_video(self, segments):
for index, segment in enumerate(segments):
segment['summary'] = self.summarizer(segment['text'])
segment['summary'] = segment['summary'][0]['summary_text']
print('index', index)
print('length', segment['length'])
print('text', segment['text'])
print('summary', segment['summary'])
return segments
def generate_answer(self, query, documents):
# concatenate question and support documents into BART input
conditioned_doc = "<P> " + " <P> ".join([d for d in documents])
query_and_docs = "question: {} context: {}".format(query, conditioned_doc)
model_input = self.question_answer_tokenizer(query_and_docs, truncation=False, padding=True,
return_tensors="pt")
generated_answers_encoded = self.question_answer_model.generate(
input_ids=model_input["input_ids"].to(self.device),
attention_mask=model_input["attention_mask"].to(self.device),
min_length=64,
max_length=256,
do_sample=False,
early_stopping=True,
num_beams=8,
temperature=1.0,
top_k=None,
top_p=None,
eos_token_id=self.question_answer_tokenizer.eos_token_id,
no_repeat_ngram_size=3,
num_return_sequences=1)
answer = self.question_answer_tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
return answer
@staticmethod
def combine_transcripts(video, window=6, stride=3):
"""
:param video:
:param window: number of sentences to combine
:param stride: number of sentences to 'stride' over, used to create overlap
:return:
"""
new_transcript_segments = []
video_info = video['video']
transcript_segments = video['transcript']['segments']
for i in tqdm(range(0, len(transcript_segments), stride)):
i_end = min(len(transcript_segments), i + window)
text = ' '.join(transcript['text']
for transcript in
transcript_segments[i:i_end])
# TODO: Should int (float to seconds) conversion happen at the API level?
start = int(transcript_segments[i]['start'])
end = int(transcript_segments[i]['end'])
new_transcript_segments.append({
**video_info,
**{
'start': start,
'end': end,
'title': video_info['title'],
'text': text,
'id': f"{video_info['id']}-t{start}",
'url': f"https://youtu.be/{video_info['id']}?t={start}",
'video_id': video_info['id'],
}
})
return new_transcript_segments