tomasito12
commited on
Commit
·
81a75b0
1
Parent(s):
b52f122
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander.zip +3 -0
- lunar_lander/_stable_baselines3_version +1 -0
- lunar_lander/data +99 -0
- lunar_lander/policy.optimizer.pth +3 -0
- lunar_lander/policy.pth +3 -0
- lunar_lander/pytorch_variables.pth +3 -0
- lunar_lander/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.87 +/- 19.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e007d9eb010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e007d9eb0a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e007d9eb130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e007d9eb1c0>", "_build": "<function ActorCriticPolicy._build at 0x7e007d9eb250>", "forward": "<function ActorCriticPolicy.forward at 0x7e007d9eb2e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e007d9eb370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e007d9eb400>", "_predict": "<function ActorCriticPolicy._predict at 0x7e007d9eb490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e007d9eb520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e007d9eb5b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e007d9eb640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e007d9f0b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693745049302068908, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqrcb1SqPK56JF+Oh7csLMd56Y78G6EMgAAgD8AAIA/s+aBPa6BmLqW/so7kJ3aN8pqjjpNeHo1AACAPwAAgD/NSIU7UijouQ7Vv7rzOUq1aL0Iu5Ws4DkAAIA/AACAP82kdrvheIG6Oz/buiaU5LU8Tqe6VZT/OQAAgD8AAIA/ZrqzO3tGhLrZYrW6b/Oetm0IUTsTTtM5AACAPwAAgD+QpYE+kgg9P/pYOL4COlq+I9QCPCo5e7sAAAAAAAAAADNKHL09AJo+QqAuvrXaSr5TG8e9cABbPQAAAAAAAAAATRFQvaSQF7n6aLa6c+IAtVN8H7uVx9k5AACAPwAAgD8A1KA8zGa3Pz349T7/8lA+0zE2vDpgBrsAAAAAAAAAAMCLtb3t24A+DVu7PDIHar7e+Xu9Q6bHPQAAAAAAAAAAAGnuvPaAWLoR5go8VfChtU0EC7s7SaS0AACAPwAAgD8ARUC+I7EBP7C6Cz47zFO+pjQsvYaOgT0AAAAAAAAAAJo4qjzaxWQ/yoKKvfYIpr7t3KC8SxXAPQAAAAAAAAAAul5/ProkrT+6AQQ/kb/BveNLmT6RX7w9AAAAAAAAAAD6qjK+CCyKPfyDRT5kloO+957BvFtQTz0AAAAAAAAAADNWQz5q0I8/+owjvPaDh7761tU9WJvdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGu0pd8iOiMAWyUTegDjAF0lEdAlVG99x6v7nV9lChoBkdAZMyvhZQpF2gHTegDaAhHQJVVAznA6+51fZQoaAZHQGPcN3fQ8fVoB03oA2gIR0CVWjYjSofkdX2UKGgGR0Bf839FWn0kaAdN6ANoCEdAlVvl5GBnSXV9lChoBkdAZXQW2PT5PGgHTegDaAhHQJVgpuNxVAB1fZQoaAZHQGbPKYJE6T5oB03oA2gIR0CVeoqAz544dX2UKGgGR0Bl8tB4Uvf1aAdN6ANoCEdAlX6yXyAhCHV9lChoBkdALEYQz1schmgHTQMBaAhHQJV+zJ2dNFl1fZQoaAZHQGK2y/9Hc1xoB03oA2gIR0CVgb+m3vx6dX2UKGgGR0BhaQevIOpbaAdN6ANoCEdAlYoMOCoS+XV9lChoBkdAYTXKoQ4CIWgHTegDaAhHQJWKm0zCUHJ1fZQoaAZHQGJJPJzT4L1oB03oA2gIR0CVkMLIxQBQdX2UKGgGR0Bg2kMspXp4aAdN6ANoCEdAlZZabe/HpHV9lChoBkdARCo2OyVv/GgHTTQBaAhHQJWXAu8K5TZ1fZQoaAZHQGF0NFz+3phoB03oA2gIR0CVm7mG/N7jdX2UKGgGR0Bkv7CN0eU7aAdN6ANoCEdAlZyHKwIMSnV9lChoBkdAYdDwI+nqFGgHTegDaAhHQJWgCmqHXVd1fZQoaAZHQF/YBK+SKWNoB03oA2gIR0CVofiMYMvzdX2UKGgGR0BaHXsC1Z1WaAdN6ANoCEdAlaL+9FnZkHV9lChoBkdAZEEZ2IO6NGgHTegDaAhHQJWmE7GNrCZ1fZQoaAZHQFzkZamoBJZoB03oA2gIR0CVq0yJKraNdX2UKGgGR0BB4637UG3XaAdNTQFoCEdAla5UDU3GXHV9lChoBkdAOCF9F4LThGgHS/poCEdAla9Iu5BkZ3V9lChoBkdAXU/c1wYLs2gHTegDaAhHQJWywTzundh1fZQoaAZHQGXEMPJ7sv9oB03oA2gIR0CV0KJ9y926dX2UKGgGR0AyaINmUW2xaAdNGAFoCEdAldMcUM5OrXV9lChoBkdAYUYuRLbpNmgHTegDaAhHQJXTtFkQPI51fZQoaAZHQGQersjVx0doB03oA2gIR0CV08hAnlXBdX2UKGgGR0As/R2r4nF6aAdNKgFoCEdAldeGalUIcHV9lChoBkdAPUHcHnlny2gHTSABaAhHQJXX52X9itt1fZQoaAZHQGQ/qYAsCkpoB03oA2gIR0CV3AHNX5nEdX2UKGgGR0BjbPxBmf5DaAdN6ANoCEdAldyJFPSDy3V9lChoBkdAZCKADJU5uWgHTegDaAhHQJXieNdZ7ol1fZQoaAZHQGE0y+HrQgNoB03oA2gIR0CV54p0wJw9dX2UKGgGR0BkHy6pYLb6aAdN6ANoCEdAlegnnEETx3V9lChoBkdAYfjbRF7UomgHTegDaAhHQJXs9J6IFeR1fZQoaAZHQGM15q/M4cZoB03oA2gIR0CV856asp5NdX2UKGgGR0BdrQCSzPa+aAdN6ANoCEdAlfkL2+PBBXV9lChoBkdAXBc+kgwGnmgHTegDaAhHQJX+/VXmvGJ1fZQoaAZHQGSor9MsYl9oB03oA2gIR0CWED1V5rxidX2UKGgGR0BiSFcKPXCkaAdN6ANoCEdAlioQcDKYA3V9lChoBkdAWnwnMMZxaWgHTegDaAhHQJYs84uK4x11fZQoaAZHQGMGRNRFZxJoB03oA2gIR0CWLeDE3sHCdX2UKGgGR0BYqq6e5Fw2aAdN6ANoCEdAli353os7MnV9lChoBkdAZNIl+mWMTGgHTegDaAhHQJYzhhAnlXB1fZQoaAZHQGSNJQDV6NVoB03oA2gIR0CWNCjcVQANdX2UKGgGR0BePmgFotcwaAdN6ANoCEdAljpFXzUZvXV9lChoBkdAZqu5z5oGp2gHTegDaAhHQJY7CwMYuTR1fZQoaAZHQGJ1e9Jz1btoB03oA2gIR0CWQp6PKdQPdX2UKGgGR0BhT0iQkonbaAdN6ANoCEdAlke2+9Jz1nV9lChoBkfAORaU7jkuH2gHTRQBaAhHQJZICttALRd1fZQoaAZHQFpVzXSSeRRoB03oA2gIR0CWSEGtITXbdX2UKGgGR0BiFdHOKO1faAdN6ANoCEdAlkwsTnJT2nV9lChoBkdAZvbk5IYm9mgHTegDaAhHQJZQLyJ9Aop1fZQoaAZHQGJ1xT0g8r9oB03oA2gIR0CWU4l6Z6UrdX2UKGgGR0BjoNIqbz9TaAdN6ANoCEdAllc1rRBu43V9lChoBkfAMPjDKoybhGgHTRkBaAhHQJZXyOS4e911fZQoaAZHQGNGOX/o7mxoB03oA2gIR0CWZFGC7K7qdX2UKGgGR0A9JJTVDrquaAdNDwFoCEdAlmgDFAE+xHV9lChoBkdAYpAubI91U2gHTegDaAhHQJaCzvAoG6h1fZQoaAZHQGIK6Q/5ckdoB03oA2gIR0CWhWS5y2hJdX2UKGgGR0Bdu9elbeMyaAdN6ANoCEdAloX3vttygnV9lChoBkdAY/hyH2ys0mgHTegDaAhHQJaGDL9uP3l1fZQoaAZHQGPjzEBKcutoB03oA2gIR0CWilFiay8jdX2UKGgGR0BjhvHT7VJ+aAdN6ANoCEdAlo7VNDc/MXV9lChoBkdAYJ01dgOSXGgHTegDaAhHQJaPZg/keZJ1fZQoaAZHQFtNKLKmsNloB03oA2gIR0CWlcibDuSfdX2UKGgGR8ADOAkLQXyiaAdNDgFoCEdAlpdlaSs8xXV9lChoBkdAZ8t4CZF5OmgHTegDaAhHQJaboHY6GQF1fZQoaAZHQGKRco6S1VpoB03oA2gIR0CWnAoXKr7wdX2UKGgGR0BgPhpxm03PaAdN6ANoCEdAlqGUXk5p8HV9lChoBkdAZoEyIpH7QGgHTegDaAhHQJamgu01IiF1fZQoaAZHQGBVZrYXfqJoB03oA2gIR0CWq3zreIl/dX2UKGgGR0BgAifQKKHgaAdN6ANoCEdAlrMqDoQnQnV9lChoBkdAQ4OZXuE252gHTQUBaAhHQJbAk+5e7cx1fZQoaAZHQGXEgCwKSgZoB03oA2gIR0CWxoBeXzDodX2UKGgGR0Av3jH4oJAuaAdNLwFoCEdAlshV/DtPYXV9lChoBkdAYsAMAmzBymgHTegDaAhHQJbKdmukk8l1fZQoaAZHQGIxTrE9+w1oB03oA2gIR0CWzyqbjLjhdX2UKGgGR0BhgA1NxlxwaAdN6ANoCEdAluFMUuctoXV9lChoBkdAYrLJmNBF/mgHTegDaAhHQJbh5Z7ojfN1fZQoaAZHQGQkqYiPhhpoB03oA2gIR0CW5dZmZmZmdX2UKGgGR0BcWEz0pVjqaAdN6ANoCEdAlutmQwK0D3V9lChoBkdAYFUfaHsTnWgHTegDaAhHQJbsM8La24N1fZQoaAZHQGJ7szdk8RtoB03oA2gIR0CW9Sce8wpOdX2UKGgGR0Bj7+7lJYknaAdN6ANoCEdAlvdzl5nlGXV9lChoBkdAYGEJfpljE2gHTegDaAhHQJb9bN4Z/Ct1fZQoaAZHQFvqB3iaRZFoB03oA2gIR0CW/gD4xk/bdX2UKGgGR0BfKRyKekHlaAdN6ANoCEdAlwOGEf1YhnV9lChoBkdAQvhuyeI2wWgHS+hoCEdAlwlLRWtEHHV9lChoBkdAY4760IC2dGgHTegDaAhHQJcSVWCEpRZ1fZQoaAZHQC51XV9Wp61oB00xAWgIR0CXGfn0TURWdX2UKGgGR0A6u0OEug6EaAdL/GgIR0CXHEKc/dIodX2UKGgGR0BewxmkFfReaAdN6ANoCEdAlxxEy1uzhXV9lChoBkdAZAVKOktVaWgHTegDaAhHQJchhlbu+h51fZQoaAZHQGKl/wZwXIloB03oA2gIR0CXIz/7zkIYdX2UKGgGR0BjyYXTEzfraAdN6ANoCEdAlyUSTyJ9A3V9lChoBkdAPm6BmPHT7WgHTRgBaAhHQJcmSoAGSp11fZQoaAZHQFjnAvL5h0BoB03oA2gIR0CXKnQjD8+BdX2UKGgGR0BlsgLqlgtwaAdN6ANoCEdAly0y0rsjV3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d6fb43cc42682114f6eb9d8aa99d3d0cfa3e5f4fecaf41e66b570a95d3950a8
|
3 |
+
size 146754
|
lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_lander/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e007d9eb010>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e007d9eb0a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e007d9eb130>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e007d9eb1c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e007d9eb250>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e007d9eb2e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e007d9eb370>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e007d9eb400>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e007d9eb490>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e007d9eb520>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e007d9eb5b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e007d9eb640>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e007d9f0b00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693745049302068908,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqrcb1SqPK56JF+Oh7csLMd56Y78G6EMgAAgD8AAIA/s+aBPa6BmLqW/so7kJ3aN8pqjjpNeHo1AACAPwAAgD/NSIU7UijouQ7Vv7rzOUq1aL0Iu5Ws4DkAAIA/AACAP82kdrvheIG6Oz/buiaU5LU8Tqe6VZT/OQAAgD8AAIA/ZrqzO3tGhLrZYrW6b/Oetm0IUTsTTtM5AACAPwAAgD+QpYE+kgg9P/pYOL4COlq+I9QCPCo5e7sAAAAAAAAAADNKHL09AJo+QqAuvrXaSr5TG8e9cABbPQAAAAAAAAAATRFQvaSQF7n6aLa6c+IAtVN8H7uVx9k5AACAPwAAgD8A1KA8zGa3Pz349T7/8lA+0zE2vDpgBrsAAAAAAAAAAMCLtb3t24A+DVu7PDIHar7e+Xu9Q6bHPQAAAAAAAAAAAGnuvPaAWLoR5go8VfChtU0EC7s7SaS0AACAPwAAgD8ARUC+I7EBP7C6Cz47zFO+pjQsvYaOgT0AAAAAAAAAAJo4qjzaxWQ/yoKKvfYIpr7t3KC8SxXAPQAAAAAAAAAAul5/ProkrT+6AQQ/kb/BveNLmT6RX7w9AAAAAAAAAAD6qjK+CCyKPfyDRT5kloO+957BvFtQTz0AAAAAAAAAADNWQz5q0I8/+owjvPaDh7761tU9WJvdvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGu0pd8iOiMAWyUTegDjAF0lEdAlVG99x6v7nV9lChoBkdAZMyvhZQpF2gHTegDaAhHQJVVAznA6+51fZQoaAZHQGPcN3fQ8fVoB03oA2gIR0CVWjYjSofkdX2UKGgGR0Bf839FWn0kaAdN6ANoCEdAlVvl5GBnSXV9lChoBkdAZXQW2PT5PGgHTegDaAhHQJVgpuNxVAB1fZQoaAZHQGbPKYJE6T5oB03oA2gIR0CVeoqAz544dX2UKGgGR0Bl8tB4Uvf1aAdN6ANoCEdAlX6yXyAhCHV9lChoBkdALEYQz1schmgHTQMBaAhHQJV+zJ2dNFl1fZQoaAZHQGK2y/9Hc1xoB03oA2gIR0CVgb+m3vx6dX2UKGgGR0BhaQevIOpbaAdN6ANoCEdAlYoMOCoS+XV9lChoBkdAYTXKoQ4CIWgHTegDaAhHQJWKm0zCUHJ1fZQoaAZHQGJJPJzT4L1oB03oA2gIR0CVkMLIxQBQdX2UKGgGR0Bg2kMspXp4aAdN6ANoCEdAlZZabe/HpHV9lChoBkdARCo2OyVv/GgHTTQBaAhHQJWXAu8K5TZ1fZQoaAZHQGF0NFz+3phoB03oA2gIR0CVm7mG/N7jdX2UKGgGR0Bkv7CN0eU7aAdN6ANoCEdAlZyHKwIMSnV9lChoBkdAYdDwI+nqFGgHTegDaAhHQJWgCmqHXVd1fZQoaAZHQF/YBK+SKWNoB03oA2gIR0CVofiMYMvzdX2UKGgGR0BaHXsC1Z1WaAdN6ANoCEdAlaL+9FnZkHV9lChoBkdAZEEZ2IO6NGgHTegDaAhHQJWmE7GNrCZ1fZQoaAZHQFzkZamoBJZoB03oA2gIR0CVq0yJKraNdX2UKGgGR0BB4637UG3XaAdNTQFoCEdAla5UDU3GXHV9lChoBkdAOCF9F4LThGgHS/poCEdAla9Iu5BkZ3V9lChoBkdAXU/c1wYLs2gHTegDaAhHQJWywTzundh1fZQoaAZHQGXEMPJ7sv9oB03oA2gIR0CV0KJ9y926dX2UKGgGR0AyaINmUW2xaAdNGAFoCEdAldMcUM5OrXV9lChoBkdAYUYuRLbpNmgHTegDaAhHQJXTtFkQPI51fZQoaAZHQGQersjVx0doB03oA2gIR0CV08hAnlXBdX2UKGgGR0As/R2r4nF6aAdNKgFoCEdAldeGalUIcHV9lChoBkdAPUHcHnlny2gHTSABaAhHQJXX52X9itt1fZQoaAZHQGQ/qYAsCkpoB03oA2gIR0CV3AHNX5nEdX2UKGgGR0BjbPxBmf5DaAdN6ANoCEdAldyJFPSDy3V9lChoBkdAZCKADJU5uWgHTegDaAhHQJXieNdZ7ol1fZQoaAZHQGE0y+HrQgNoB03oA2gIR0CV54p0wJw9dX2UKGgGR0BkHy6pYLb6aAdN6ANoCEdAlegnnEETx3V9lChoBkdAYfjbRF7UomgHTegDaAhHQJXs9J6IFeR1fZQoaAZHQGM15q/M4cZoB03oA2gIR0CV856asp5NdX2UKGgGR0BdrQCSzPa+aAdN6ANoCEdAlfkL2+PBBXV9lChoBkdAXBc+kgwGnmgHTegDaAhHQJX+/VXmvGJ1fZQoaAZHQGSor9MsYl9oB03oA2gIR0CWED1V5rxidX2UKGgGR0BiSFcKPXCkaAdN6ANoCEdAlioQcDKYA3V9lChoBkdAWnwnMMZxaWgHTegDaAhHQJYs84uK4x11fZQoaAZHQGMGRNRFZxJoB03oA2gIR0CWLeDE3sHCdX2UKGgGR0BYqq6e5Fw2aAdN6ANoCEdAli353os7MnV9lChoBkdAZNIl+mWMTGgHTegDaAhHQJYzhhAnlXB1fZQoaAZHQGSNJQDV6NVoB03oA2gIR0CWNCjcVQANdX2UKGgGR0BePmgFotcwaAdN6ANoCEdAljpFXzUZvXV9lChoBkdAZqu5z5oGp2gHTegDaAhHQJY7CwMYuTR1fZQoaAZHQGJ1e9Jz1btoB03oA2gIR0CWQp6PKdQPdX2UKGgGR0BhT0iQkonbaAdN6ANoCEdAlke2+9Jz1nV9lChoBkfAORaU7jkuH2gHTRQBaAhHQJZICttALRd1fZQoaAZHQFpVzXSSeRRoB03oA2gIR0CWSEGtITXbdX2UKGgGR0BiFdHOKO1faAdN6ANoCEdAlkwsTnJT2nV9lChoBkdAZvbk5IYm9mgHTegDaAhHQJZQLyJ9Aop1fZQoaAZHQGJ1xT0g8r9oB03oA2gIR0CWU4l6Z6UrdX2UKGgGR0BjoNIqbz9TaAdN6ANoCEdAllc1rRBu43V9lChoBkfAMPjDKoybhGgHTRkBaAhHQJZXyOS4e911fZQoaAZHQGNGOX/o7mxoB03oA2gIR0CWZFGC7K7qdX2UKGgGR0A9JJTVDrquaAdNDwFoCEdAlmgDFAE+xHV9lChoBkdAYpAubI91U2gHTegDaAhHQJaCzvAoG6h1fZQoaAZHQGIK6Q/5ckdoB03oA2gIR0CWhWS5y2hJdX2UKGgGR0Bdu9elbeMyaAdN6ANoCEdAloX3vttygnV9lChoBkdAY/hyH2ys0mgHTegDaAhHQJaGDL9uP3l1fZQoaAZHQGPjzEBKcutoB03oA2gIR0CWilFiay8jdX2UKGgGR0BjhvHT7VJ+aAdN6ANoCEdAlo7VNDc/MXV9lChoBkdAYJ01dgOSXGgHTegDaAhHQJaPZg/keZJ1fZQoaAZHQFtNKLKmsNloB03oA2gIR0CWlcibDuSfdX2UKGgGR8ADOAkLQXyiaAdNDgFoCEdAlpdlaSs8xXV9lChoBkdAZ8t4CZF5OmgHTegDaAhHQJaboHY6GQF1fZQoaAZHQGKRco6S1VpoB03oA2gIR0CWnAoXKr7wdX2UKGgGR0BgPhpxm03PaAdN6ANoCEdAlqGUXk5p8HV9lChoBkdAZoEyIpH7QGgHTegDaAhHQJamgu01IiF1fZQoaAZHQGBVZrYXfqJoB03oA2gIR0CWq3zreIl/dX2UKGgGR0BgAifQKKHgaAdN6ANoCEdAlrMqDoQnQnV9lChoBkdAQ4OZXuE252gHTQUBaAhHQJbAk+5e7cx1fZQoaAZHQGXEgCwKSgZoB03oA2gIR0CWxoBeXzDodX2UKGgGR0Av3jH4oJAuaAdNLwFoCEdAlshV/DtPYXV9lChoBkdAYsAMAmzBymgHTegDaAhHQJbKdmukk8l1fZQoaAZHQGIxTrE9+w1oB03oA2gIR0CWzyqbjLjhdX2UKGgGR0BhgA1NxlxwaAdN6ANoCEdAluFMUuctoXV9lChoBkdAYrLJmNBF/mgHTegDaAhHQJbh5Z7ojfN1fZQoaAZHQGQkqYiPhhpoB03oA2gIR0CW5dZmZmZmdX2UKGgGR0BcWEz0pVjqaAdN6ANoCEdAlutmQwK0D3V9lChoBkdAYFUfaHsTnWgHTegDaAhHQJbsM8La24N1fZQoaAZHQGJ7szdk8RtoB03oA2gIR0CW9Sce8wpOdX2UKGgGR0Bj7+7lJYknaAdN6ANoCEdAlvdzl5nlGXV9lChoBkdAYGEJfpljE2gHTegDaAhHQJb9bN4Z/Ct1fZQoaAZHQFvqB3iaRZFoB03oA2gIR0CW/gD4xk/bdX2UKGgGR0BfKRyKekHlaAdN6ANoCEdAlwOGEf1YhnV9lChoBkdAQvhuyeI2wWgHS+hoCEdAlwlLRWtEHHV9lChoBkdAY4760IC2dGgHTegDaAhHQJcSVWCEpRZ1fZQoaAZHQC51XV9Wp61oB00xAWgIR0CXGfn0TURWdX2UKGgGR0A6u0OEug6EaAdL/GgIR0CXHEKc/dIodX2UKGgGR0BewxmkFfReaAdN6ANoCEdAlxxEy1uzhXV9lChoBkdAZAVKOktVaWgHTegDaAhHQJchhlbu+h51fZQoaAZHQGKl/wZwXIloB03oA2gIR0CXIz/7zkIYdX2UKGgGR0BjyYXTEzfraAdN6ANoCEdAlyUSTyJ9A3V9lChoBkdAPm6BmPHT7WgHTRgBaAhHQJcmSoAGSp11fZQoaAZHQFjnAvL5h0BoB03oA2gIR0CXKnQjD8+BdX2UKGgGR0BlsgLqlgtwaAdN6ANoCEdAly0y0rsjV3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c37ff8690142885bec415e1ce076c96e7219a0b1ee404c0f2b9806093dfccd6a
|
3 |
+
size 87929
|
lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4f9bb6796e4601afec8115c8044cb9bdecd651358977527b13fa487df441dc6
|
3 |
+
size 43329
|
lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (169 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.8733467, "std_reward": 19.70088781107574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T13:10:59.149811"}
|