Use updated, generated README
Browse files
README.md
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: span-marker
|
3 |
tags:
|
4 |
- span-marker
|
@@ -6,35 +9,92 @@ tags:
|
|
6 |
- ner
|
7 |
- named-entity-recognition
|
8 |
- generated_from_span_marker_trainer
|
|
|
|
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
12 |
- f1
|
13 |
-
widget:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
# SpanMarker
|
18 |
|
19 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
|
|
|
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
### Model Description
|
24 |
|
25 |
- **Model Type:** SpanMarker
|
26 |
-
|
27 |
- **Maximum Sequence Length:** 256 tokens
|
28 |
- **Maximum Entity Length:** 8 words
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
### Model Sources
|
34 |
|
35 |
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
36 |
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
## Uses
|
39 |
|
40 |
### Direct Use for Inference
|
@@ -43,9 +103,9 @@ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that ca
|
|
43 |
from span_marker import SpanMarkerModel
|
44 |
|
45 |
# Download from the 🤗 Hub
|
46 |
-
model = SpanMarkerModel.from_pretrained("
|
47 |
# Run inference
|
48 |
-
entities = model.predict("
|
49 |
```
|
50 |
|
51 |
### Downstream Use
|
@@ -57,7 +117,7 @@ You can finetune this model on your own dataset.
|
|
57 |
from span_marker import SpanMarkerModel, Trainer
|
58 |
|
59 |
# Download from the 🤗 Hub
|
60 |
-
model = SpanMarkerModel.from_pretrained("
|
61 |
|
62 |
# Specify a Dataset with "tokens" and "ner_tag" columns
|
63 |
dataset = load_dataset("conll2003") # For example CoNLL2003
|
@@ -69,7 +129,7 @@ trainer = Trainer(
|
|
69 |
eval_dataset=dataset["validation"],
|
70 |
)
|
71 |
trainer.train()
|
72 |
-
trainer.save_model("
|
73 |
```
|
74 |
</details>
|
75 |
|
@@ -93,6 +153,43 @@ trainer.save_model("span_marker_model_id-finetuned")
|
|
93 |
|
94 |
## Training Details
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
### Framework Versions
|
97 |
|
98 |
- Python: 3.9.16
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
library_name: span-marker
|
6 |
tags:
|
7 |
- span-marker
|
|
|
9 |
- ner
|
10 |
- named-entity-recognition
|
11 |
- generated_from_span_marker_trainer
|
12 |
+
datasets:
|
13 |
+
- acronym_identification
|
14 |
metrics:
|
15 |
- precision
|
16 |
- recall
|
17 |
- f1
|
18 |
+
widget:
|
19 |
+
- text: "here, da = direct assessment, rr = relative ranking, ds = discrete scale and cs = continuous scale."
|
20 |
+
example_title: "Uncased 1"
|
21 |
+
- text: "modifying or replacing the erasable programmable read only memory (eprom) in a phone would allow the configuration of any esn and min via software for cellular devices."
|
22 |
+
example_title: "Uncased 2"
|
23 |
+
- text: "we propose a technique called aggressive stochastic weight averaging (aswa) and an extension called norm-filtered aggressive stochastic weight averaging (naswa) which improves te stability of models over random seeds."
|
24 |
+
example_title: "Uncased 3"
|
25 |
+
- text: "the choice of the encoder and decoder modules of dnpg can be quite flexible, for instance long-short term memory networks (lstm) or convolutional neural network (cnn)."
|
26 |
+
example_title: "Uncased 4"
|
27 |
pipeline_tag: token-classification
|
28 |
+
co2_eq_emissions:
|
29 |
+
emissions: 31.203903222402037
|
30 |
+
source: codecarbon
|
31 |
+
training_type: fine-tuning
|
32 |
+
on_cloud: false
|
33 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
34 |
+
ram_total_size: 31.777088165283203
|
35 |
+
hours_used: 0.272
|
36 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
37 |
+
base_model: bert-base-uncased
|
38 |
+
model-index:
|
39 |
+
- name: SpanMarker with bert-base-uncased on Acronym Identification
|
40 |
+
results:
|
41 |
+
- task:
|
42 |
+
type: token-classification
|
43 |
+
name: Named Entity Recognition
|
44 |
+
dataset:
|
45 |
+
name: Acronym Identification
|
46 |
+
type: acronym_identification
|
47 |
+
split: validation
|
48 |
+
metrics:
|
49 |
+
- type: f1
|
50 |
+
value: 0.9198933333333332
|
51 |
+
name: F1
|
52 |
+
- type: precision
|
53 |
+
value: 0.9339397877409573
|
54 |
+
name: Precision
|
55 |
+
- type: recall
|
56 |
+
value: 0.9062631357713324
|
57 |
+
name: Recall
|
58 |
---
|
59 |
|
60 |
+
# SpanMarker with bert-base-uncased on Acronym Identification
|
61 |
|
62 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Acronym Identification](https://huggingface.co/datasets/acronym_identification) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co/bert-base-uncased) as the underlying encoder. See [train.py](train.py) for the training script.
|
63 |
+
|
64 |
+
Is your data always capitalized correctly? Then consider using the cased variant of this model instead for better performance: tomaarsen/span-marker-bert-base-acronyms.
|
65 |
|
66 |
## Model Details
|
67 |
|
68 |
### Model Description
|
69 |
|
70 |
- **Model Type:** SpanMarker
|
71 |
+
- **Encoder:** [bert-base-uncased](https://huggingface.co/bert-base-uncased)
|
72 |
- **Maximum Sequence Length:** 256 tokens
|
73 |
- **Maximum Entity Length:** 8 words
|
74 |
+
- **Training Dataset:** [Acronym Identification](https://huggingface.co/datasets/acronym_identification)
|
75 |
+
- **Language:** en
|
76 |
+
- **License:** apache-2.0
|
77 |
|
78 |
### Model Sources
|
79 |
|
80 |
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
81 |
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
82 |
|
83 |
+
### Model Labels
|
84 |
+
| Label | Examples |
|
85 |
+
|:------|:------------------------------------------------------------------------------------------------------|
|
86 |
+
| long | "successive convex approximation", "controlled natural language", "Conversational Question Answering" |
|
87 |
+
| short | "SODA", "CNL", "CoQA" |
|
88 |
+
|
89 |
+
## Evaluation
|
90 |
+
|
91 |
+
### Metrics
|
92 |
+
| Label | Precision | Recall | F1 |
|
93 |
+
|:--------|:----------|:-------|:-------|
|
94 |
+
| **all** | 0.9339 | 0.9063 | 0.9199 |
|
95 |
+
| long | 0.9314 | 0.8845 | 0.9074 |
|
96 |
+
| short | 0.9352 | 0.9174 | 0.9262 |
|
97 |
+
|
98 |
## Uses
|
99 |
|
100 |
### Direct Use for Inference
|
|
|
103 |
from span_marker import SpanMarkerModel
|
104 |
|
105 |
# Download from the 🤗 Hub
|
106 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms")
|
107 |
# Run inference
|
108 |
+
entities = model.predict("compression algorithms like principal component analysis (pca) can reduce noise and complexity.")
|
109 |
```
|
110 |
|
111 |
### Downstream Use
|
|
|
117 |
from span_marker import SpanMarkerModel, Trainer
|
118 |
|
119 |
# Download from the 🤗 Hub
|
120 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms")
|
121 |
|
122 |
# Specify a Dataset with "tokens" and "ner_tag" columns
|
123 |
dataset = load_dataset("conll2003") # For example CoNLL2003
|
|
|
129 |
eval_dataset=dataset["validation"],
|
130 |
)
|
131 |
trainer.train()
|
132 |
+
trainer.save_model("tomaarsen/span-marker-bert-base-uncased-acronyms-finetuned")
|
133 |
```
|
134 |
</details>
|
135 |
|
|
|
153 |
|
154 |
## Training Details
|
155 |
|
156 |
+
### Training Set Metrics
|
157 |
+
| Training set | Min | Median | Max |
|
158 |
+
|:----------------------|:----|:--------|:----|
|
159 |
+
| Sentence length | 4 | 32.3372 | 170 |
|
160 |
+
| Entities per sentence | 0 | 2.6775 | 24 |
|
161 |
+
|
162 |
+
### Training Hyperparameters
|
163 |
+
- learning_rate: 5e-05
|
164 |
+
- train_batch_size: 32
|
165 |
+
- eval_batch_size: 32
|
166 |
+
- seed: 42
|
167 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
168 |
+
- lr_scheduler_type: linear
|
169 |
+
- lr_scheduler_warmup_ratio: 0.1
|
170 |
+
- num_epochs: 2
|
171 |
+
|
172 |
+
### Training Results
|
173 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
174 |
+
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
175 |
+
| 0.3120 | 200 | 0.0097 | 0.8999 | 0.8731 | 0.8863 | 0.9718 |
|
176 |
+
| 0.6240 | 400 | 0.0075 | 0.9163 | 0.8995 | 0.9078 | 0.9769 |
|
177 |
+
| 0.9360 | 600 | 0.0076 | 0.9079 | 0.9153 | 0.9116 | 0.9773 |
|
178 |
+
| 1.2480 | 800 | 0.0069 | 0.9267 | 0.9006 | 0.9135 | 0.9778 |
|
179 |
+
| 1.5601 | 1000 | 0.0065 | 0.9268 | 0.9044 | 0.9154 | 0.9782 |
|
180 |
+
| 1.8721 | 1200 | 0.0065 | 0.9279 | 0.9061 | 0.9168 | 0.9787 |
|
181 |
+
|
182 |
+
### Environmental Impact
|
183 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
184 |
+
- **Carbon Emitted**: 0.031 kg of CO2
|
185 |
+
- **Hours Used**: 0.272 hours
|
186 |
+
|
187 |
+
### Training Hardware
|
188 |
+
- **On Cloud**: No
|
189 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
190 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
191 |
+
- **RAM Size**: 31.78 GB
|
192 |
+
|
193 |
### Framework Versions
|
194 |
|
195 |
- Python: 3.9.16
|