Create train_script.py
Browse files- train_script.py +159 -0
train_script.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import traceback
|
3 |
+
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
from sentence_transformers.cross_encoder import CrossEncoder
|
7 |
+
from sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator import (
|
8 |
+
CENanoBEIREvaluator,
|
9 |
+
)
|
10 |
+
from sentence_transformers.cross_encoder.losses import ListNetLoss
|
11 |
+
from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer
|
12 |
+
from sentence_transformers.cross_encoder.training_args import (
|
13 |
+
CrossEncoderTrainingArguments,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
def main():
|
18 |
+
model_name = "microsoft/MiniLM-L12-H384-uncased"
|
19 |
+
|
20 |
+
# Set the log level to INFO to get more information
|
21 |
+
logging.basicConfig(
|
22 |
+
format="%(asctime)s - %(message)s",
|
23 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
24 |
+
level=logging.INFO,
|
25 |
+
)
|
26 |
+
# The batch size is lower because we have to process multiple documents per query
|
27 |
+
# This means that the batch size is effectively multiplied by the number of max_docs
|
28 |
+
train_batch_size = 8
|
29 |
+
num_epochs = 1
|
30 |
+
max_docs = 10
|
31 |
+
pad_value = -1
|
32 |
+
loss_name = "listnet"
|
33 |
+
num_labels = 1
|
34 |
+
|
35 |
+
# 1. Define our CrossEncoder model
|
36 |
+
model = CrossEncoder(model_name, num_labels=num_labels)
|
37 |
+
print("Model max length:", model.max_length)
|
38 |
+
print("Model num labels:", model.num_labels)
|
39 |
+
|
40 |
+
# 2. Load the MS MARCO dataset: https://huggingface.co/datasets/microsoft/ms_marco
|
41 |
+
logging.info("Read train dataset")
|
42 |
+
dataset = load_dataset("microsoft/ms_marco", "v1.1", split="train")
|
43 |
+
|
44 |
+
def listwise_mapper(batch, max_docs: int = 10, pad_value: int = -1):
|
45 |
+
processed_queries = []
|
46 |
+
processed_docs = []
|
47 |
+
processed_labels = []
|
48 |
+
|
49 |
+
for query, passages_info in zip(batch["query"], batch["passages"]):
|
50 |
+
# Extract passages and labels
|
51 |
+
passages = passages_info["passage_text"]
|
52 |
+
labels = passages_info["is_selected"]
|
53 |
+
|
54 |
+
# Pair passages with labels and sort descending by label (positives first)
|
55 |
+
paired = sorted(zip(passages, labels), key=lambda x: x[1], reverse=True)
|
56 |
+
|
57 |
+
# Separate back to passages and labels
|
58 |
+
sorted_passages, sorted_labels = zip(*paired) if paired else ([], [])
|
59 |
+
|
60 |
+
# Filter queries without any positive labels
|
61 |
+
if max(sorted_labels) < 1.0:
|
62 |
+
continue
|
63 |
+
|
64 |
+
# Truncate to max_docs
|
65 |
+
truncated_passages = list(sorted_passages[:max_docs])
|
66 |
+
truncated_labels = list(sorted_labels[:max_docs])
|
67 |
+
|
68 |
+
# Pad if needed
|
69 |
+
pad_count = max_docs - len(truncated_passages)
|
70 |
+
processed_docs.append(truncated_passages + [""] * pad_count)
|
71 |
+
processed_labels.append(truncated_labels + [pad_value] * pad_count)
|
72 |
+
processed_queries.append(query)
|
73 |
+
|
74 |
+
return {
|
75 |
+
"query": processed_queries,
|
76 |
+
"docs": processed_docs,
|
77 |
+
"labels": processed_labels,
|
78 |
+
}
|
79 |
+
|
80 |
+
dataset = dataset.map(
|
81 |
+
lambda batch: listwise_mapper(batch=batch, max_docs=max_docs, pad_value=pad_value),
|
82 |
+
batched=True,
|
83 |
+
remove_columns=dataset.column_names,
|
84 |
+
desc="Processing listwise samples",
|
85 |
+
)
|
86 |
+
|
87 |
+
dataset = dataset.train_test_split(test_size=10_000)
|
88 |
+
train_dataset = dataset["train"]
|
89 |
+
eval_dataset = dataset["test"]
|
90 |
+
logging.info(train_dataset)
|
91 |
+
|
92 |
+
# 3. Define our training loss
|
93 |
+
loss = ListNetLoss(model, pad_value=pad_value)
|
94 |
+
|
95 |
+
# 4. Define the evaluator. We use the CENanoBEIREvaluator, which is a light-weight evaluator for English reranking
|
96 |
+
evaluator = CENanoBEIREvaluator(dataset_names=["msmarco", "nfcorpus", "nq"], batch_size=train_batch_size)
|
97 |
+
evaluator(model)
|
98 |
+
|
99 |
+
# 5. Define the training arguments
|
100 |
+
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
|
101 |
+
run_name = f"reranker-msmarco-v1.1-{short_model_name}-{loss_name}"
|
102 |
+
args = CrossEncoderTrainingArguments(
|
103 |
+
# Required parameter:
|
104 |
+
output_dir=f"models/{run_name}",
|
105 |
+
# Optional training parameters:
|
106 |
+
num_train_epochs=num_epochs,
|
107 |
+
per_device_train_batch_size=train_batch_size,
|
108 |
+
per_device_eval_batch_size=train_batch_size,
|
109 |
+
learning_rate=2e-5,
|
110 |
+
warmup_ratio=0.1,
|
111 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
112 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
113 |
+
# MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
114 |
+
load_best_model_at_end=True,
|
115 |
+
metric_for_best_model="eval_NanoBEIR_mean_ndcg@10",
|
116 |
+
# Optional tracking/debugging parameters:
|
117 |
+
eval_strategy="steps",
|
118 |
+
eval_steps=1600,
|
119 |
+
save_strategy="steps",
|
120 |
+
save_steps=1600,
|
121 |
+
save_total_limit=2,
|
122 |
+
logging_steps=200,
|
123 |
+
logging_first_step=True,
|
124 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
125 |
+
seed=12,
|
126 |
+
)
|
127 |
+
|
128 |
+
# 6. Create the trainer & start training
|
129 |
+
trainer = CrossEncoderTrainer(
|
130 |
+
model=model,
|
131 |
+
args=args,
|
132 |
+
train_dataset=train_dataset,
|
133 |
+
eval_dataset=eval_dataset,
|
134 |
+
loss=loss,
|
135 |
+
evaluator=evaluator,
|
136 |
+
)
|
137 |
+
trainer.train()
|
138 |
+
|
139 |
+
# 7. Evaluate the final model, useful to include these in the model card
|
140 |
+
evaluator(model)
|
141 |
+
|
142 |
+
# 8. Save the final model
|
143 |
+
final_output_dir = f"models/{run_name}/final"
|
144 |
+
model.save_pretrained(final_output_dir)
|
145 |
+
|
146 |
+
# 9. (Optional) save the model to the Hugging Face Hub!
|
147 |
+
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
|
148 |
+
try:
|
149 |
+
model.push_to_hub(run_name)
|
150 |
+
except Exception:
|
151 |
+
logging.error(
|
152 |
+
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
|
153 |
+
f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
|
154 |
+
f"and saving it using `model.push_to_hub('{run_name}')`."
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
main()
|