tomaarsen HF staff commited on
Commit
71244da
1 Parent(s): ac65a01

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:100231
11
+ - loss:CachedMultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: 'query: who ordered the charge of the light brigade'
15
+ sentences:
16
+ - 'document: Charge of the Light Brigade The Charge of the Light Brigade was a charge
17
+ of British light cavalry led by Lord Cardigan against Russian forces during the
18
+ Battle of Balaclava on 25 October 1854 in the Crimean War. Lord Raglan, overall
19
+ commander of the British forces, had intended to send the Light Brigade to prevent
20
+ the Russians from removing captured guns from overrun Turkish positions, a task
21
+ well-suited to light cavalry.'
22
+ - 'document: UNICEF The United Nations International Children''s Emergency Fund
23
+ was created by the United Nations General Assembly on 11 December 1946, to provide
24
+ emergency food and healthcare to children in countries that had been devastated
25
+ by World War II. The Polish physician Ludwik Rajchman is widely regarded as the
26
+ founder of UNICEF and served as its first chairman from 1946. On Rajchman''s suggestion,
27
+ the American Maurice Pate was appointed its first executive director, serving
28
+ from 1947 until his death in 1965.[5][6] In 1950, UNICEF''s mandate was extended
29
+ to address the long-term needs of children and women in developing countries everywhere.
30
+ In 1953 it became a permanent part of the United Nations System, and the words
31
+ "international" and "emergency" were dropped from the organization''s name, making
32
+ it simply the United Nations Children''s Fund, retaining the original acronym,
33
+ "UNICEF".[3]'
34
+ - 'document: Marcus Jordan Marcus James Jordan (born December 24, 1990) is an American
35
+ former college basketball player who played for the UCF Knights men''s basketball
36
+ team of Conference USA.[1] He is the son of retired Hall of Fame basketball player
37
+ Michael Jordan.'
38
+ - source_sentence: 'query: what part of the cow is the rib roast'
39
+ sentences:
40
+ - 'document: Standing rib roast A standing rib roast, also known as prime rib, is
41
+ a cut of beef from the primal rib, one of the nine primal cuts of beef. While
42
+ the entire rib section comprises ribs six through 12, a standing rib roast may
43
+ contain anywhere from two to seven ribs.'
44
+ - 'document: Blaine Anderson Kurt begins to mend their relationship in "Thanksgiving",
45
+ just before New Directions loses at Sectionals to the Warblers, and they spend
46
+ Christmas together in New York City.[29][30] Though he and Kurt continue to be
47
+ on good terms, Blaine finds himself developing a crush on his best friend, Sam,
48
+ which he knows will come to nothing as he knows Sam is not gay; the two of them
49
+ team up to find evidence that the Warblers cheated at Sectionals, which means
50
+ New Directions will be competing at Regionals. He ends up going to the Sadie Hawkins
51
+ dance with Tina Cohen-Chang (Jenna Ushkowitz), who has developed a crush on him,
52
+ but as friends only.[31] When Kurt comes to Lima for the wedding of glee club
53
+ director Will (Matthew Morrison) and Emma (Jayma Mays)—which Emma flees—he and
54
+ Blaine make out beforehand, and sleep together afterward, though they do not resume
55
+ a permanent relationship.[32]'
56
+ - 'document: Soviet Union The Soviet Union (Russian: Сове́тский Сою́з, tr. Sovétsky
57
+ Soyúz, IPA: [sɐˈvʲɛt͡skʲɪj sɐˈjus] ( listen)), officially the Union of Soviet
58
+ Socialist Republics (Russian: Сою́з Сове́тских Социалисти́ческих Респу́блик, tr.
59
+ Soyúz Sovétskikh Sotsialistícheskikh Respúblik, IPA: [sɐˈjus sɐˈvʲɛtskʲɪx sətsɨəlʲɪsˈtʲitɕɪskʲɪx
60
+ rʲɪˈspublʲɪk] ( listen)), abbreviated as the USSR (Russian: СССР, tr. SSSR), was
61
+ a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union
62
+ of multiple national Soviet republics,[a] its government and economy were highly
63
+ centralized. The country was a one-party state, governed by the Communist Party
64
+ with Moscow as its capital in its largest republic, the Russian Soviet Federative
65
+ Socialist Republic. The Russian nation had constitutionally equal status among
66
+ the many nations of the union but exerted de facto dominance in various respects.[7]
67
+ Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata and Novosibirsk.
68
+ The Soviet Union was one of the five recognized nuclear weapons states and possessed
69
+ the largest stockpile of weapons of mass destruction.[8] It was a founding permanent
70
+ member of the United Nations Security Council, as well as a member of the Organization
71
+ for Security and Co-operation in Europe (OSCE) and the leading member of the Council
72
+ for Mutual Economic Assistance (CMEA) and the Warsaw Pact.'
73
+ - source_sentence: 'query: what is the current big bang theory season'
74
+ sentences:
75
+ - 'document: Byzantine army From the seventh to the 12th centuries, the Byzantine
76
+ army was among the most powerful and effective military forces in the world –
77
+ neither Middle Ages Europe nor (following its early successes) the fracturing
78
+ Caliphate could match the strategies and the efficiency of the Byzantine army.
79
+ Restricted to a largely defensive role in the 7th to mid-9th centuries, the Byzantines
80
+ developed the theme-system to counter the more powerful Caliphate. From the mid-9th
81
+ century, however, they gradually went on the offensive, culminating in the great
82
+ conquests of the 10th century under a series of soldier-emperors such as Nikephoros
83
+ II Phokas, John Tzimiskes and Basil II. The army they led was less reliant on
84
+ the militia of the themes; it was by now a largely professional force, with a
85
+ strong and well-drilled infantry at its core and augmented by a revived heavy
86
+ cavalry arm. With one of the most powerful economies in the world at the time,
87
+ the Empire had the resources to put to the field a powerful host when needed,
88
+ in order to reclaim its long-lost territories.'
89
+ - 'document: The Big Bang Theory The Big Bang Theory is an American television sitcom
90
+ created by Chuck Lorre and Bill Prady, both of whom serve as executive producers
91
+ on the series, along with Steven Molaro. All three also serve as head writers.
92
+ The show premiered on CBS on September 24, 2007.[3] The series'' tenth season
93
+ premiered on September 19, 2016.[4] In March 2017, the series was renewed for
94
+ two additional seasons, bringing its total to twelve, and running through the
95
+ 2018–19 television season. The eleventh season is set to premiere on September
96
+ 25, 2017.[5]'
97
+ - 'document: 2016 NCAA Division I Softball Tournament The 2016 NCAA Division I Softball
98
+ Tournament was held from May 20 through June 8, 2016 as the final part of the
99
+ 2016 NCAA Division I softball season. The 64 NCAA Division I college softball
100
+ teams were to be selected out of an eligible 293 teams on May 15, 2016. Thirty-two
101
+ teams were awarded an automatic bid as champions of their conference, and thirty-two
102
+ teams were selected at-large by the NCAA Division I softball selection committee.
103
+ The tournament culminated with eight teams playing in the 2016 Women''s College
104
+ World Series at ASA Hall of Fame Stadium in Oklahoma City in which the Oklahoma
105
+ Sooners were crowned the champions.'
106
+ - source_sentence: 'query: what happened to tates mom on days of our lives'
107
+ sentences:
108
+ - 'document: Paige O''Hara Donna Paige Helmintoller, better known as Paige O''Hara
109
+ (born May 10, 1956),[1] is an American actress, voice actress, singer and painter.
110
+ O''Hara began her career as a Broadway actress in 1983 when she portrayed Ellie
111
+ May Chipley in the musical Showboat. In 1991, she made her motion picture debut
112
+ in Disney''s Beauty and the Beast, in which she voiced the film''s heroine, Belle.
113
+ Following the critical and commercial success of Beauty and the Beast, O''Hara
114
+ reprised her role as Belle in the film''s two direct-to-video follow-ups, Beauty
115
+ and the Beast: The Enchanted Christmas and Belle''s Magical World.'
116
+ - 'document: M. Shadows Matthew Charles Sanders (born July 31, 1981), better known
117
+ as M. Shadows, is an American singer, songwriter, and musician. He is best known
118
+ as the lead vocalist, songwriter, and a founding member of the American heavy
119
+ metal band Avenged Sevenfold. In 2017, he was voted 3rd in the list of Top 25
120
+ Greatest Modern Frontmen by Ultimate Guitar.[1]'
121
+ - 'document: Theresa Donovan In July 2013, Jeannie returns to Salem, this time going
122
+ by her middle name, Theresa. Initially, she strikes up a connection with resident
123
+ bad boy JJ Deveraux (Casey Moss) while trying to secure some pot.[28] During a
124
+ confrontation with JJ and his mother Jennifer Horton (Melissa Reeves) in her office,
125
+ her aunt Kayla confirms that Theresa is in fact Jeannie and that Jen promised
126
+ to hire her as her assistant, a promise she reluctantly agrees to. Kayla reminds
127
+ Theresa it is her last chance at a fresh start.[29] Theresa also strikes up a
128
+ bad first impression with Jennifer''s daughter Abigail Deveraux (Kate Mansi) when
129
+ Abigail smells pot on Theresa in her mother''s office.[30] To continue to battle
130
+ against Jennifer, she teams up with Anne Milbauer (Meredith Scott Lynn) in hopes
131
+ of exacting her perfect revenge. In a ploy, Theresa reveals her intentions to
132
+ hopefully woo Dr. Daniel Jonas (Shawn Christian). After sleeping with JJ, Theresa
133
+ overdoses on marijuana and GHB. Upon hearing of their daughter''s overdose and
134
+ continuing problems, Shane and Kimberly return to town in the hopes of handling
135
+ their daughter''s problem, together. After believing that Theresa has a handle
136
+ on her addictions, Shane and Kimberly leave town together. Theresa then teams
137
+ up with hospital co-worker Anne Milbauer (Meredith Scott Lynn) to conspire against
138
+ Jennifer, using Daniel as a way to hurt their relationship. In early 2014, following
139
+ a Narcotics Anonymous (NA) meeting, she begins a sexual and drugged-fused relationship
140
+ with Brady Black (Eric Martsolf). In 2015, after it is found that Kristen DiMera
141
+ (Eileen Davidson) stole Theresa''s embryo and carried it to term, Brady and Melanie
142
+ Jonas return her son, Christopher, to her and Brady, and the pair rename him Tate.
143
+ When Theresa moves into the Kiriakis mansion, tensions arise between her and Victor.
144
+ She eventually expresses her interest in purchasing Basic Black and running it
145
+ as her own fashion company, with financial backing from Maggie Horton (Suzanne
146
+ Rogers). In the hopes of finding the right partner, she teams up with Kate Roberts
147
+ (Lauren Koslow) and Nicole Walker (Arianne Zucker) to achieve the goal of purchasing
148
+ Basic Black, with Kate and Nicole''s business background and her own interest
149
+ in fashion design. As she and Brady share several instances of rekindling their
150
+ romance, she is kicked out of the mansion by Victor; as a result, Brady quits
151
+ Titan and moves in with Theresa and Tate, in their own penthouse.'
152
+ - source_sentence: 'query: where does the last name francisco come from'
153
+ sentences:
154
+ - 'document: Francisco Francisco is the Spanish and Portuguese form of the masculine
155
+ given name Franciscus (corresponding to English Francis).'
156
+ - 'document: Book of Esther The Book of Esther, also known in Hebrew as "the Scroll"
157
+ (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish
158
+ Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the
159
+ five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew
160
+ woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia
161
+ and thwarts a genocide of her people. The story forms the core of the Jewish festival
162
+ of Purim, during which it is read aloud twice: once in the evening and again the
163
+ following morning. The books of Esther and Song of Songs are the only books in
164
+ the Hebrew Bible that do not explicitly mention God.[2]'
165
+ - 'document: Times Square Times Square is a major commercial intersection, tourist
166
+ destination, entertainment center and neighborhood in the Midtown Manhattan section
167
+ of New York City at the junction of Broadway and Seventh Avenue. It stretches
168
+ from West 42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements,
169
+ Times Square is sometimes referred to as "The Crossroads of the World",[2] "The
170
+ Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the
171
+ "heart of the world".[7] One of the world''s busiest pedestrian areas,[8] it is
172
+ also the hub of the Broadway Theater District[9] and a major center of the world''s
173
+ entertainment industry.[10] Times Square is one of the world''s most visited tourist
174
+ attractions, drawing an estimated 50 million visitors annually.[11] Approximately
175
+ 330,000 people pass through Times Square daily,[12] many of them tourists,[13]
176
+ while over 460,000 pedestrians walk through Times Square on its busiest days.[7]'
177
+ datasets:
178
+ - sentence-transformers/natural-questions
179
+ pipeline_tag: sentence-similarity
180
+ library_name: sentence-transformers
181
+ metrics:
182
+ - cosine_accuracy@1
183
+ - cosine_accuracy@3
184
+ - cosine_accuracy@5
185
+ - cosine_accuracy@10
186
+ - cosine_precision@1
187
+ - cosine_precision@3
188
+ - cosine_precision@5
189
+ - cosine_precision@10
190
+ - cosine_recall@1
191
+ - cosine_recall@3
192
+ - cosine_recall@5
193
+ - cosine_recall@10
194
+ - cosine_ndcg@10
195
+ - cosine_mrr@10
196
+ - cosine_map@100
197
+ co2_eq_emissions:
198
+ emissions: 150.23069332557947
199
+ energy_consumed: 0.3864932347288655
200
+ source: codecarbon
201
+ training_type: fine-tuning
202
+ on_cloud: false
203
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
204
+ ram_total_size: 31.777088165283203
205
+ hours_used: 0.992
206
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
207
+ model-index:
208
+ - name: MPNet base trained on Natural Questions pairs
209
+ results:
210
+ - task:
211
+ type: information-retrieval
212
+ name: Information Retrieval
213
+ dataset:
214
+ name: NanoClimateFEVER
215
+ type: NanoClimateFEVER
216
+ metrics:
217
+ - type: cosine_accuracy@1
218
+ value: 0.32
219
+ name: Cosine Accuracy@1
220
+ - type: cosine_accuracy@3
221
+ value: 0.44
222
+ name: Cosine Accuracy@3
223
+ - type: cosine_accuracy@5
224
+ value: 0.54
225
+ name: Cosine Accuracy@5
226
+ - type: cosine_accuracy@10
227
+ value: 0.72
228
+ name: Cosine Accuracy@10
229
+ - type: cosine_precision@1
230
+ value: 0.32
231
+ name: Cosine Precision@1
232
+ - type: cosine_precision@3
233
+ value: 0.16666666666666663
234
+ name: Cosine Precision@3
235
+ - type: cosine_precision@5
236
+ value: 0.128
237
+ name: Cosine Precision@5
238
+ - type: cosine_precision@10
239
+ value: 0.094
240
+ name: Cosine Precision@10
241
+ - type: cosine_recall@1
242
+ value: 0.14833333333333332
243
+ name: Cosine Recall@1
244
+ - type: cosine_recall@3
245
+ value: 0.22833333333333336
246
+ name: Cosine Recall@3
247
+ - type: cosine_recall@5
248
+ value: 0.275
249
+ name: Cosine Recall@5
250
+ - type: cosine_recall@10
251
+ value: 0.3856666666666666
252
+ name: Cosine Recall@10
253
+ - type: cosine_ndcg@10
254
+ value: 0.3187569272515937
255
+ name: Cosine Ndcg@10
256
+ - type: cosine_mrr@10
257
+ value: 0.4290793650793651
258
+ name: Cosine Mrr@10
259
+ - type: cosine_map@100
260
+ value: 0.2524141945131634
261
+ name: Cosine Map@100
262
+ - task:
263
+ type: information-retrieval
264
+ name: Information Retrieval
265
+ dataset:
266
+ name: NanoDBPedia
267
+ type: NanoDBPedia
268
+ metrics:
269
+ - type: cosine_accuracy@1
270
+ value: 0.52
271
+ name: Cosine Accuracy@1
272
+ - type: cosine_accuracy@3
273
+ value: 0.82
274
+ name: Cosine Accuracy@3
275
+ - type: cosine_accuracy@5
276
+ value: 0.88
277
+ name: Cosine Accuracy@5
278
+ - type: cosine_accuracy@10
279
+ value: 0.9
280
+ name: Cosine Accuracy@10
281
+ - type: cosine_precision@1
282
+ value: 0.52
283
+ name: Cosine Precision@1
284
+ - type: cosine_precision@3
285
+ value: 0.4733333333333334
286
+ name: Cosine Precision@3
287
+ - type: cosine_precision@5
288
+ value: 0.44000000000000006
289
+ name: Cosine Precision@5
290
+ - type: cosine_precision@10
291
+ value: 0.4
292
+ name: Cosine Precision@10
293
+ - type: cosine_recall@1
294
+ value: 0.03396323655614276
295
+ name: Cosine Recall@1
296
+ - type: cosine_recall@3
297
+ value: 0.12935272940456002
298
+ name: Cosine Recall@3
299
+ - type: cosine_recall@5
300
+ value: 0.17086006825513927
301
+ name: Cosine Recall@5
302
+ - type: cosine_recall@10
303
+ value: 0.2726281368807285
304
+ name: Cosine Recall@10
305
+ - type: cosine_ndcg@10
306
+ value: 0.4729507176614181
307
+ name: Cosine Ndcg@10
308
+ - type: cosine_mrr@10
309
+ value: 0.6735238095238094
310
+ name: Cosine Mrr@10
311
+ - type: cosine_map@100
312
+ value: 0.3353352051190898
313
+ name: Cosine Map@100
314
+ - task:
315
+ type: information-retrieval
316
+ name: Information Retrieval
317
+ dataset:
318
+ name: NanoFEVER
319
+ type: NanoFEVER
320
+ metrics:
321
+ - type: cosine_accuracy@1
322
+ value: 0.5
323
+ name: Cosine Accuracy@1
324
+ - type: cosine_accuracy@3
325
+ value: 0.66
326
+ name: Cosine Accuracy@3
327
+ - type: cosine_accuracy@5
328
+ value: 0.76
329
+ name: Cosine Accuracy@5
330
+ - type: cosine_accuracy@10
331
+ value: 0.84
332
+ name: Cosine Accuracy@10
333
+ - type: cosine_precision@1
334
+ value: 0.5
335
+ name: Cosine Precision@1
336
+ - type: cosine_precision@3
337
+ value: 0.2333333333333333
338
+ name: Cosine Precision@3
339
+ - type: cosine_precision@5
340
+ value: 0.16
341
+ name: Cosine Precision@5
342
+ - type: cosine_precision@10
343
+ value: 0.09
344
+ name: Cosine Precision@10
345
+ - type: cosine_recall@1
346
+ value: 0.49
347
+ name: Cosine Recall@1
348
+ - type: cosine_recall@3
349
+ value: 0.65
350
+ name: Cosine Recall@3
351
+ - type: cosine_recall@5
352
+ value: 0.74
353
+ name: Cosine Recall@5
354
+ - type: cosine_recall@10
355
+ value: 0.82
356
+ name: Cosine Recall@10
357
+ - type: cosine_ndcg@10
358
+ value: 0.6605078920703665
359
+ name: Cosine Ndcg@10
360
+ - type: cosine_mrr@10
361
+ value: 0.6122142857142857
362
+ name: Cosine Mrr@10
363
+ - type: cosine_map@100
364
+ value: 0.6101603039065089
365
+ name: Cosine Map@100
366
+ - task:
367
+ type: information-retrieval
368
+ name: Information Retrieval
369
+ dataset:
370
+ name: NanoFiQA2018
371
+ type: NanoFiQA2018
372
+ metrics:
373
+ - type: cosine_accuracy@1
374
+ value: 0.34
375
+ name: Cosine Accuracy@1
376
+ - type: cosine_accuracy@3
377
+ value: 0.54
378
+ name: Cosine Accuracy@3
379
+ - type: cosine_accuracy@5
380
+ value: 0.56
381
+ name: Cosine Accuracy@5
382
+ - type: cosine_accuracy@10
383
+ value: 0.66
384
+ name: Cosine Accuracy@10
385
+ - type: cosine_precision@1
386
+ value: 0.34
387
+ name: Cosine Precision@1
388
+ - type: cosine_precision@3
389
+ value: 0.23333333333333336
390
+ name: Cosine Precision@3
391
+ - type: cosine_precision@5
392
+ value: 0.16399999999999998
393
+ name: Cosine Precision@5
394
+ - type: cosine_precision@10
395
+ value: 0.1
396
+ name: Cosine Precision@10
397
+ - type: cosine_recall@1
398
+ value: 0.18835714285714286
399
+ name: Cosine Recall@1
400
+ - type: cosine_recall@3
401
+ value: 0.33643650793650787
402
+ name: Cosine Recall@3
403
+ - type: cosine_recall@5
404
+ value: 0.3869365079365079
405
+ name: Cosine Recall@5
406
+ - type: cosine_recall@10
407
+ value: 0.4772698412698413
408
+ name: Cosine Recall@10
409
+ - type: cosine_ndcg@10
410
+ value: 0.3864278762836658
411
+ name: Cosine Ndcg@10
412
+ - type: cosine_mrr@10
413
+ value: 0.44638095238095227
414
+ name: Cosine Mrr@10
415
+ - type: cosine_map@100
416
+ value: 0.33106542521597093
417
+ name: Cosine Map@100
418
+ - task:
419
+ type: information-retrieval
420
+ name: Information Retrieval
421
+ dataset:
422
+ name: NanoHotpotQA
423
+ type: NanoHotpotQA
424
+ metrics:
425
+ - type: cosine_accuracy@1
426
+ value: 0.58
427
+ name: Cosine Accuracy@1
428
+ - type: cosine_accuracy@3
429
+ value: 0.68
430
+ name: Cosine Accuracy@3
431
+ - type: cosine_accuracy@5
432
+ value: 0.7
433
+ name: Cosine Accuracy@5
434
+ - type: cosine_accuracy@10
435
+ value: 0.72
436
+ name: Cosine Accuracy@10
437
+ - type: cosine_precision@1
438
+ value: 0.58
439
+ name: Cosine Precision@1
440
+ - type: cosine_precision@3
441
+ value: 0.29333333333333333
442
+ name: Cosine Precision@3
443
+ - type: cosine_precision@5
444
+ value: 0.18799999999999997
445
+ name: Cosine Precision@5
446
+ - type: cosine_precision@10
447
+ value: 0.10399999999999998
448
+ name: Cosine Precision@10
449
+ - type: cosine_recall@1
450
+ value: 0.29
451
+ name: Cosine Recall@1
452
+ - type: cosine_recall@3
453
+ value: 0.44
454
+ name: Cosine Recall@3
455
+ - type: cosine_recall@5
456
+ value: 0.47
457
+ name: Cosine Recall@5
458
+ - type: cosine_recall@10
459
+ value: 0.52
460
+ name: Cosine Recall@10
461
+ - type: cosine_ndcg@10
462
+ value: 0.4999416649642652
463
+ name: Cosine Ndcg@10
464
+ - type: cosine_mrr@10
465
+ value: 0.6335238095238095
466
+ name: Cosine Mrr@10
467
+ - type: cosine_map@100
468
+ value: 0.4448089713818368
469
+ name: Cosine Map@100
470
+ - task:
471
+ type: information-retrieval
472
+ name: Information Retrieval
473
+ dataset:
474
+ name: NanoMSMARCO
475
+ type: NanoMSMARCO
476
+ metrics:
477
+ - type: cosine_accuracy@1
478
+ value: 0.24
479
+ name: Cosine Accuracy@1
480
+ - type: cosine_accuracy@3
481
+ value: 0.58
482
+ name: Cosine Accuracy@3
483
+ - type: cosine_accuracy@5
484
+ value: 0.62
485
+ name: Cosine Accuracy@5
486
+ - type: cosine_accuracy@10
487
+ value: 0.84
488
+ name: Cosine Accuracy@10
489
+ - type: cosine_precision@1
490
+ value: 0.24
491
+ name: Cosine Precision@1
492
+ - type: cosine_precision@3
493
+ value: 0.19333333333333333
494
+ name: Cosine Precision@3
495
+ - type: cosine_precision@5
496
+ value: 0.124
497
+ name: Cosine Precision@5
498
+ - type: cosine_precision@10
499
+ value: 0.08399999999999999
500
+ name: Cosine Precision@10
501
+ - type: cosine_recall@1
502
+ value: 0.24
503
+ name: Cosine Recall@1
504
+ - type: cosine_recall@3
505
+ value: 0.58
506
+ name: Cosine Recall@3
507
+ - type: cosine_recall@5
508
+ value: 0.62
509
+ name: Cosine Recall@5
510
+ - type: cosine_recall@10
511
+ value: 0.84
512
+ name: Cosine Recall@10
513
+ - type: cosine_ndcg@10
514
+ value: 0.5319048285659115
515
+ name: Cosine Ndcg@10
516
+ - type: cosine_mrr@10
517
+ value: 0.4348571428571429
518
+ name: Cosine Mrr@10
519
+ - type: cosine_map@100
520
+ value: 0.43875227720621784
521
+ name: Cosine Map@100
522
+ - task:
523
+ type: information-retrieval
524
+ name: Information Retrieval
525
+ dataset:
526
+ name: NanoNFCorpus
527
+ type: NanoNFCorpus
528
+ metrics:
529
+ - type: cosine_accuracy@1
530
+ value: 0.36
531
+ name: Cosine Accuracy@1
532
+ - type: cosine_accuracy@3
533
+ value: 0.48
534
+ name: Cosine Accuracy@3
535
+ - type: cosine_accuracy@5
536
+ value: 0.52
537
+ name: Cosine Accuracy@5
538
+ - type: cosine_accuracy@10
539
+ value: 0.58
540
+ name: Cosine Accuracy@10
541
+ - type: cosine_precision@1
542
+ value: 0.36
543
+ name: Cosine Precision@1
544
+ - type: cosine_precision@3
545
+ value: 0.2733333333333334
546
+ name: Cosine Precision@3
547
+ - type: cosine_precision@5
548
+ value: 0.244
549
+ name: Cosine Precision@5
550
+ - type: cosine_precision@10
551
+ value: 0.192
552
+ name: Cosine Precision@10
553
+ - type: cosine_recall@1
554
+ value: 0.01238391750608928
555
+ name: Cosine Recall@1
556
+ - type: cosine_recall@3
557
+ value: 0.039883080435831664
558
+ name: Cosine Recall@3
559
+ - type: cosine_recall@5
560
+ value: 0.06288856904273381
561
+ name: Cosine Recall@5
562
+ - type: cosine_recall@10
563
+ value: 0.07500385649849943
564
+ name: Cosine Recall@10
565
+ - type: cosine_ndcg@10
566
+ value: 0.2319934745350622
567
+ name: Cosine Ndcg@10
568
+ - type: cosine_mrr@10
569
+ value: 0.42766666666666664
570
+ name: Cosine Mrr@10
571
+ - type: cosine_map@100
572
+ value: 0.0794137882666506
573
+ name: Cosine Map@100
574
+ - task:
575
+ type: information-retrieval
576
+ name: Information Retrieval
577
+ dataset:
578
+ name: NanoNQ
579
+ type: NanoNQ
580
+ metrics:
581
+ - type: cosine_accuracy@1
582
+ value: 0.42
583
+ name: Cosine Accuracy@1
584
+ - type: cosine_accuracy@3
585
+ value: 0.58
586
+ name: Cosine Accuracy@3
587
+ - type: cosine_accuracy@5
588
+ value: 0.72
589
+ name: Cosine Accuracy@5
590
+ - type: cosine_accuracy@10
591
+ value: 0.78
592
+ name: Cosine Accuracy@10
593
+ - type: cosine_precision@1
594
+ value: 0.42
595
+ name: Cosine Precision@1
596
+ - type: cosine_precision@3
597
+ value: 0.2
598
+ name: Cosine Precision@3
599
+ - type: cosine_precision@5
600
+ value: 0.15200000000000002
601
+ name: Cosine Precision@5
602
+ - type: cosine_precision@10
603
+ value: 0.08199999999999999
604
+ name: Cosine Precision@10
605
+ - type: cosine_recall@1
606
+ value: 0.4
607
+ name: Cosine Recall@1
608
+ - type: cosine_recall@3
609
+ value: 0.56
610
+ name: Cosine Recall@3
611
+ - type: cosine_recall@5
612
+ value: 0.69
613
+ name: Cosine Recall@5
614
+ - type: cosine_recall@10
615
+ value: 0.74
616
+ name: Cosine Recall@10
617
+ - type: cosine_ndcg@10
618
+ value: 0.5748655650210671
619
+ name: Cosine Ndcg@10
620
+ - type: cosine_mrr@10
621
+ value: 0.5314126984126983
622
+ name: Cosine Mrr@10
623
+ - type: cosine_map@100
624
+ value: 0.5242404589943156
625
+ name: Cosine Map@100
626
+ - task:
627
+ type: information-retrieval
628
+ name: Information Retrieval
629
+ dataset:
630
+ name: NanoQuoraRetrieval
631
+ type: NanoQuoraRetrieval
632
+ metrics:
633
+ - type: cosine_accuracy@1
634
+ value: 0.84
635
+ name: Cosine Accuracy@1
636
+ - type: cosine_accuracy@3
637
+ value: 0.9
638
+ name: Cosine Accuracy@3
639
+ - type: cosine_accuracy@5
640
+ value: 0.94
641
+ name: Cosine Accuracy@5
642
+ - type: cosine_accuracy@10
643
+ value: 0.96
644
+ name: Cosine Accuracy@10
645
+ - type: cosine_precision@1
646
+ value: 0.84
647
+ name: Cosine Precision@1
648
+ - type: cosine_precision@3
649
+ value: 0.3666666666666666
650
+ name: Cosine Precision@3
651
+ - type: cosine_precision@5
652
+ value: 0.24399999999999994
653
+ name: Cosine Precision@5
654
+ - type: cosine_precision@10
655
+ value: 0.12999999999999998
656
+ name: Cosine Precision@10
657
+ - type: cosine_recall@1
658
+ value: 0.7406666666666666
659
+ name: Cosine Recall@1
660
+ - type: cosine_recall@3
661
+ value: 0.8546666666666667
662
+ name: Cosine Recall@3
663
+ - type: cosine_recall@5
664
+ value: 0.9126666666666666
665
+ name: Cosine Recall@5
666
+ - type: cosine_recall@10
667
+ value: 0.95
668
+ name: Cosine Recall@10
669
+ - type: cosine_ndcg@10
670
+ value: 0.8889894995280002
671
+ name: Cosine Ndcg@10
672
+ - type: cosine_mrr@10
673
+ value: 0.88
674
+ name: Cosine Mrr@10
675
+ - type: cosine_map@100
676
+ value: 0.865184126984127
677
+ name: Cosine Map@100
678
+ - task:
679
+ type: information-retrieval
680
+ name: Information Retrieval
681
+ dataset:
682
+ name: NanoSCIDOCS
683
+ type: NanoSCIDOCS
684
+ metrics:
685
+ - type: cosine_accuracy@1
686
+ value: 0.38
687
+ name: Cosine Accuracy@1
688
+ - type: cosine_accuracy@3
689
+ value: 0.54
690
+ name: Cosine Accuracy@3
691
+ - type: cosine_accuracy@5
692
+ value: 0.64
693
+ name: Cosine Accuracy@5
694
+ - type: cosine_accuracy@10
695
+ value: 0.7
696
+ name: Cosine Accuracy@10
697
+ - type: cosine_precision@1
698
+ value: 0.38
699
+ name: Cosine Precision@1
700
+ - type: cosine_precision@3
701
+ value: 0.26666666666666666
702
+ name: Cosine Precision@3
703
+ - type: cosine_precision@5
704
+ value: 0.24000000000000005
705
+ name: Cosine Precision@5
706
+ - type: cosine_precision@10
707
+ value: 0.168
708
+ name: Cosine Precision@10
709
+ - type: cosine_recall@1
710
+ value: 0.07966666666666666
711
+ name: Cosine Recall@1
712
+ - type: cosine_recall@3
713
+ value: 0.16466666666666668
714
+ name: Cosine Recall@3
715
+ - type: cosine_recall@5
716
+ value: 0.2476666666666667
717
+ name: Cosine Recall@5
718
+ - type: cosine_recall@10
719
+ value: 0.3466666666666666
720
+ name: Cosine Recall@10
721
+ - type: cosine_ndcg@10
722
+ value: 0.32654775369281447
723
+ name: Cosine Ndcg@10
724
+ - type: cosine_mrr@10
725
+ value: 0.48057936507936494
726
+ name: Cosine Mrr@10
727
+ - type: cosine_map@100
728
+ value: 0.2539360793287232
729
+ name: Cosine Map@100
730
+ - task:
731
+ type: information-retrieval
732
+ name: Information Retrieval
733
+ dataset:
734
+ name: NanoArguAna
735
+ type: NanoArguAna
736
+ metrics:
737
+ - type: cosine_accuracy@1
738
+ value: 0.22
739
+ name: Cosine Accuracy@1
740
+ - type: cosine_accuracy@3
741
+ value: 0.68
742
+ name: Cosine Accuracy@3
743
+ - type: cosine_accuracy@5
744
+ value: 0.84
745
+ name: Cosine Accuracy@5
746
+ - type: cosine_accuracy@10
747
+ value: 0.94
748
+ name: Cosine Accuracy@10
749
+ - type: cosine_precision@1
750
+ value: 0.22
751
+ name: Cosine Precision@1
752
+ - type: cosine_precision@3
753
+ value: 0.22666666666666668
754
+ name: Cosine Precision@3
755
+ - type: cosine_precision@5
756
+ value: 0.16799999999999998
757
+ name: Cosine Precision@5
758
+ - type: cosine_precision@10
759
+ value: 0.09399999999999999
760
+ name: Cosine Precision@10
761
+ - type: cosine_recall@1
762
+ value: 0.22
763
+ name: Cosine Recall@1
764
+ - type: cosine_recall@3
765
+ value: 0.68
766
+ name: Cosine Recall@3
767
+ - type: cosine_recall@5
768
+ value: 0.84
769
+ name: Cosine Recall@5
770
+ - type: cosine_recall@10
771
+ value: 0.94
772
+ name: Cosine Recall@10
773
+ - type: cosine_ndcg@10
774
+ value: 0.5876482592525207
775
+ name: Cosine Ndcg@10
776
+ - type: cosine_mrr@10
777
+ value: 0.4729682539682539
778
+ name: Cosine Mrr@10
779
+ - type: cosine_map@100
780
+ value: 0.47557555990432704
781
+ name: Cosine Map@100
782
+ - task:
783
+ type: information-retrieval
784
+ name: Information Retrieval
785
+ dataset:
786
+ name: NanoSciFact
787
+ type: NanoSciFact
788
+ metrics:
789
+ - type: cosine_accuracy@1
790
+ value: 0.44
791
+ name: Cosine Accuracy@1
792
+ - type: cosine_accuracy@3
793
+ value: 0.62
794
+ name: Cosine Accuracy@3
795
+ - type: cosine_accuracy@5
796
+ value: 0.72
797
+ name: Cosine Accuracy@5
798
+ - type: cosine_accuracy@10
799
+ value: 0.72
800
+ name: Cosine Accuracy@10
801
+ - type: cosine_precision@1
802
+ value: 0.44
803
+ name: Cosine Precision@1
804
+ - type: cosine_precision@3
805
+ value: 0.21999999999999997
806
+ name: Cosine Precision@3
807
+ - type: cosine_precision@5
808
+ value: 0.156
809
+ name: Cosine Precision@5
810
+ - type: cosine_precision@10
811
+ value: 0.08199999999999999
812
+ name: Cosine Precision@10
813
+ - type: cosine_recall@1
814
+ value: 0.405
815
+ name: Cosine Recall@1
816
+ - type: cosine_recall@3
817
+ value: 0.59
818
+ name: Cosine Recall@3
819
+ - type: cosine_recall@5
820
+ value: 0.695
821
+ name: Cosine Recall@5
822
+ - type: cosine_recall@10
823
+ value: 0.71
824
+ name: Cosine Recall@10
825
+ - type: cosine_ndcg@10
826
+ value: 0.5767123941093207
827
+ name: Cosine Ndcg@10
828
+ - type: cosine_mrr@10
829
+ value: 0.5429999999999999
830
+ name: Cosine Mrr@10
831
+ - type: cosine_map@100
832
+ value: 0.5334565069270951
833
+ name: Cosine Map@100
834
+ - task:
835
+ type: information-retrieval
836
+ name: Information Retrieval
837
+ dataset:
838
+ name: NanoTouche2020
839
+ type: NanoTouche2020
840
+ metrics:
841
+ - type: cosine_accuracy@1
842
+ value: 0.46938775510204084
843
+ name: Cosine Accuracy@1
844
+ - type: cosine_accuracy@3
845
+ value: 0.8163265306122449
846
+ name: Cosine Accuracy@3
847
+ - type: cosine_accuracy@5
848
+ value: 0.8979591836734694
849
+ name: Cosine Accuracy@5
850
+ - type: cosine_accuracy@10
851
+ value: 0.9795918367346939
852
+ name: Cosine Accuracy@10
853
+ - type: cosine_precision@1
854
+ value: 0.46938775510204084
855
+ name: Cosine Precision@1
856
+ - type: cosine_precision@3
857
+ value: 0.510204081632653
858
+ name: Cosine Precision@3
859
+ - type: cosine_precision@5
860
+ value: 0.4897959183673469
861
+ name: Cosine Precision@5
862
+ - type: cosine_precision@10
863
+ value: 0.4183673469387754
864
+ name: Cosine Precision@10
865
+ - type: cosine_recall@1
866
+ value: 0.036314671946956895
867
+ name: Cosine Recall@1
868
+ - type: cosine_recall@3
869
+ value: 0.11525654861192165
870
+ name: Cosine Recall@3
871
+ - type: cosine_recall@5
872
+ value: 0.17899227494149947
873
+ name: Cosine Recall@5
874
+ - type: cosine_recall@10
875
+ value: 0.28096865635375134
876
+ name: Cosine Recall@10
877
+ - type: cosine_ndcg@10
878
+ value: 0.46189031192436647
879
+ name: Cosine Ndcg@10
880
+ - type: cosine_mrr@10
881
+ value: 0.6598639455782312
882
+ name: Cosine Mrr@10
883
+ - type: cosine_map@100
884
+ value: 0.36456263452013177
885
+ name: Cosine Map@100
886
+ - task:
887
+ type: nano-beir
888
+ name: Nano BEIR
889
+ dataset:
890
+ name: NanoBEIR mean
891
+ type: NanoBEIR_mean
892
+ metrics:
893
+ - type: cosine_accuracy@1
894
+ value: 0.4330298273155416
895
+ name: Cosine Accuracy@1
896
+ - type: cosine_accuracy@3
897
+ value: 0.6412558869701728
898
+ name: Cosine Accuracy@3
899
+ - type: cosine_accuracy@5
900
+ value: 0.7183045525902668
901
+ name: Cosine Accuracy@5
902
+ - type: cosine_accuracy@10
903
+ value: 0.7953532182103611
904
+ name: Cosine Accuracy@10
905
+ - type: cosine_precision@1
906
+ value: 0.4330298273155416
907
+ name: Cosine Precision@1
908
+ - type: cosine_precision@3
909
+ value: 0.28129774986917844
910
+ name: Cosine Precision@3
911
+ - type: cosine_precision@5
912
+ value: 0.2229073783359498
913
+ name: Cosine Precision@5
914
+ - type: cosine_precision@10
915
+ value: 0.15679748822605966
916
+ name: Cosine Precision@10
917
+ - type: cosine_recall@1
918
+ value: 0.2526681258102306
919
+ name: Cosine Recall@1
920
+ - type: cosine_recall@3
921
+ value: 0.4129688871581144
922
+ name: Cosine Recall@3
923
+ - type: cosine_recall@5
924
+ value: 0.4838469810391703
925
+ name: Cosine Recall@5
926
+ - type: cosine_recall@10
927
+ value: 0.5660156787950887
928
+ name: Cosine Recall@10
929
+ - type: cosine_ndcg@10
930
+ value: 0.5014720896046441
931
+ name: Cosine Ndcg@10
932
+ - type: cosine_mrr@10
933
+ value: 0.5557746380603523
934
+ name: Cosine Mrr@10
935
+ - type: cosine_map@100
936
+ value: 0.4237619640206276
937
+ name: Cosine Map@100
938
+ ---
939
+
940
+ # MPNet base trained on Natural Questions pairs
941
+
942
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
943
+
944
+ ## Model Details
945
+
946
+ ### Model Description
947
+ - **Model Type:** Sentence Transformer
948
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
949
+ - **Maximum Sequence Length:** 512 tokens
950
+ - **Output Dimensionality:** 768 dimensions
951
+ - **Similarity Function:** Cosine Similarity
952
+ - **Training Dataset:**
953
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
954
+ - **Language:** en
955
+ - **License:** apache-2.0
956
+
957
+ ### Model Sources
958
+
959
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
960
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
961
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
962
+
963
+ ### Full Model Architecture
964
+
965
+ ```
966
+ SentenceTransformer(
967
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
968
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
969
+ )
970
+ ```
971
+
972
+ ## Usage
973
+
974
+ ### Direct Usage (Sentence Transformers)
975
+
976
+ First install the Sentence Transformers library:
977
+
978
+ ```bash
979
+ pip install -U sentence-transformers
980
+ ```
981
+
982
+ Then you can load this model and run inference.
983
+ ```python
984
+ from sentence_transformers import SentenceTransformer
985
+
986
+ # Download from the 🤗 Hub
987
+ model = SentenceTransformer("tomaarsen/mpnet-base-nq-prompts")
988
+ # Run inference
989
+ sentences = [
990
+ 'query: where does the last name francisco come from',
991
+ 'document: Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).',
992
+ 'document: Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]',
993
+ ]
994
+ embeddings = model.encode(sentences)
995
+ print(embeddings.shape)
996
+ # [3, 768]
997
+
998
+ # Get the similarity scores for the embeddings
999
+ similarities = model.similarity(embeddings, embeddings)
1000
+ print(similarities.shape)
1001
+ # [3, 3]
1002
+ ```
1003
+
1004
+ <!--
1005
+ ### Direct Usage (Transformers)
1006
+
1007
+ <details><summary>Click to see the direct usage in Transformers</summary>
1008
+
1009
+ </details>
1010
+ -->
1011
+
1012
+ <!--
1013
+ ### Downstream Usage (Sentence Transformers)
1014
+
1015
+ You can finetune this model on your own dataset.
1016
+
1017
+ <details><summary>Click to expand</summary>
1018
+
1019
+ </details>
1020
+ -->
1021
+
1022
+ <!--
1023
+ ### Out-of-Scope Use
1024
+
1025
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1026
+ -->
1027
+
1028
+ ## Evaluation
1029
+
1030
+ ### Metrics
1031
+
1032
+ #### Information Retrieval
1033
+
1034
+ * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
1035
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1036
+
1037
+ | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
1038
+ |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
1039
+ | cosine_accuracy@1 | 0.32 | 0.52 | 0.5 | 0.34 | 0.58 | 0.24 | 0.36 | 0.42 | 0.84 | 0.38 | 0.22 | 0.44 | 0.4694 |
1040
+ | cosine_accuracy@3 | 0.44 | 0.82 | 0.66 | 0.54 | 0.68 | 0.58 | 0.48 | 0.58 | 0.9 | 0.54 | 0.68 | 0.62 | 0.8163 |
1041
+ | cosine_accuracy@5 | 0.54 | 0.88 | 0.76 | 0.56 | 0.7 | 0.62 | 0.52 | 0.72 | 0.94 | 0.64 | 0.84 | 0.72 | 0.898 |
1042
+ | cosine_accuracy@10 | 0.72 | 0.9 | 0.84 | 0.66 | 0.72 | 0.84 | 0.58 | 0.78 | 0.96 | 0.7 | 0.94 | 0.72 | 0.9796 |
1043
+ | cosine_precision@1 | 0.32 | 0.52 | 0.5 | 0.34 | 0.58 | 0.24 | 0.36 | 0.42 | 0.84 | 0.38 | 0.22 | 0.44 | 0.4694 |
1044
+ | cosine_precision@3 | 0.1667 | 0.4733 | 0.2333 | 0.2333 | 0.2933 | 0.1933 | 0.2733 | 0.2 | 0.3667 | 0.2667 | 0.2267 | 0.22 | 0.5102 |
1045
+ | cosine_precision@5 | 0.128 | 0.44 | 0.16 | 0.164 | 0.188 | 0.124 | 0.244 | 0.152 | 0.244 | 0.24 | 0.168 | 0.156 | 0.4898 |
1046
+ | cosine_precision@10 | 0.094 | 0.4 | 0.09 | 0.1 | 0.104 | 0.084 | 0.192 | 0.082 | 0.13 | 0.168 | 0.094 | 0.082 | 0.4184 |
1047
+ | cosine_recall@1 | 0.1483 | 0.034 | 0.49 | 0.1884 | 0.29 | 0.24 | 0.0124 | 0.4 | 0.7407 | 0.0797 | 0.22 | 0.405 | 0.0363 |
1048
+ | cosine_recall@3 | 0.2283 | 0.1294 | 0.65 | 0.3364 | 0.44 | 0.58 | 0.0399 | 0.56 | 0.8547 | 0.1647 | 0.68 | 0.59 | 0.1153 |
1049
+ | cosine_recall@5 | 0.275 | 0.1709 | 0.74 | 0.3869 | 0.47 | 0.62 | 0.0629 | 0.69 | 0.9127 | 0.2477 | 0.84 | 0.695 | 0.179 |
1050
+ | cosine_recall@10 | 0.3857 | 0.2726 | 0.82 | 0.4773 | 0.52 | 0.84 | 0.075 | 0.74 | 0.95 | 0.3467 | 0.94 | 0.71 | 0.281 |
1051
+ | **cosine_ndcg@10** | **0.3188** | **0.473** | **0.6605** | **0.3864** | **0.4999** | **0.5319** | **0.232** | **0.5749** | **0.889** | **0.3265** | **0.5876** | **0.5767** | **0.4619** |
1052
+ | cosine_mrr@10 | 0.4291 | 0.6735 | 0.6122 | 0.4464 | 0.6335 | 0.4349 | 0.4277 | 0.5314 | 0.88 | 0.4806 | 0.473 | 0.543 | 0.6599 |
1053
+ | cosine_map@100 | 0.2524 | 0.3353 | 0.6102 | 0.3311 | 0.4448 | 0.4388 | 0.0794 | 0.5242 | 0.8652 | 0.2539 | 0.4756 | 0.5335 | 0.3646 |
1054
+
1055
+ #### Nano BEIR
1056
+
1057
+ * Dataset: `NanoBEIR_mean`
1058
+ * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
1059
+
1060
+ | Metric | Value |
1061
+ |:--------------------|:-----------|
1062
+ | cosine_accuracy@1 | 0.433 |
1063
+ | cosine_accuracy@3 | 0.6413 |
1064
+ | cosine_accuracy@5 | 0.7183 |
1065
+ | cosine_accuracy@10 | 0.7954 |
1066
+ | cosine_precision@1 | 0.433 |
1067
+ | cosine_precision@3 | 0.2813 |
1068
+ | cosine_precision@5 | 0.2229 |
1069
+ | cosine_precision@10 | 0.1568 |
1070
+ | cosine_recall@1 | 0.2527 |
1071
+ | cosine_recall@3 | 0.413 |
1072
+ | cosine_recall@5 | 0.4838 |
1073
+ | cosine_recall@10 | 0.566 |
1074
+ | **cosine_ndcg@10** | **0.5015** |
1075
+ | cosine_mrr@10 | 0.5558 |
1076
+ | cosine_map@100 | 0.4238 |
1077
+
1078
+ <!--
1079
+ ## Bias, Risks and Limitations
1080
+
1081
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1082
+ -->
1083
+
1084
+ <!--
1085
+ ### Recommendations
1086
+
1087
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1088
+ -->
1089
+
1090
+ ## Training Details
1091
+
1092
+ ### Training Dataset
1093
+
1094
+ #### natural-questions
1095
+
1096
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1097
+ * Size: 100,231 training samples
1098
+ * Columns: <code>query</code> and <code>answer</code>
1099
+ * Approximate statistics based on the first 1000 samples:
1100
+ | | query | answer |
1101
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1102
+ | type | string | string |
1103
+ | details | <ul><li>min: 12 tokens</li><li>mean: 13.74 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 139.2 tokens</li><li>max: 510 tokens</li></ul> |
1104
+ * Samples:
1105
+ | query | answer |
1106
+ |:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1107
+ | <code>query: who is required to report according to the hmda</code> | <code>document: Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5]</code> |
1108
+ | <code>query: what is the definition of endoplasmic reticulum in biology</code> | <code>document: Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 u...</code> |
1109
+ | <code>query: what does the ski mean in polish names</code> | <code>document: Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today.</code> |
1110
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
1111
+ ```json
1112
+ {
1113
+ "scale": 20.0,
1114
+ "similarity_fct": "cos_sim"
1115
+ }
1116
+ ```
1117
+
1118
+ ### Evaluation Dataset
1119
+
1120
+ #### natural-questions
1121
+
1122
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1123
+ * Size: 100,231 evaluation samples
1124
+ * Columns: <code>query</code> and <code>answer</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | query | answer |
1127
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 12 tokens</li><li>mean: 13.78 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 137.63 tokens</li><li>max: 512 tokens</li></ul> |
1130
+ * Samples:
1131
+ | query | answer |
1132
+ |:-------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1133
+ | <code>query: difference between russian blue and british blue cat</code> | <code>document: Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits.</code> |
1134
+ | <code>query: who played the little girl on mrs doubtfire</code> | <code>document: Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing.</code> |
1135
+ | <code>query: what year did the movie the sound of music come out</code> | <code>document: The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000.</code> |
1136
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
1137
+ ```json
1138
+ {
1139
+ "scale": 20.0,
1140
+ "similarity_fct": "cos_sim"
1141
+ }
1142
+ ```
1143
+
1144
+ ### Training Hyperparameters
1145
+ #### Non-Default Hyperparameters
1146
+
1147
+ - `eval_strategy`: steps
1148
+ - `per_device_train_batch_size`: 256
1149
+ - `per_device_eval_batch_size`: 256
1150
+ - `learning_rate`: 2e-05
1151
+ - `num_train_epochs`: 1
1152
+ - `warmup_ratio`: 0.1
1153
+ - `seed`: 12
1154
+ - `bf16`: True
1155
+ - `batch_sampler`: no_duplicates
1156
+
1157
+ #### All Hyperparameters
1158
+ <details><summary>Click to expand</summary>
1159
+
1160
+ - `overwrite_output_dir`: False
1161
+ - `do_predict`: False
1162
+ - `eval_strategy`: steps
1163
+ - `prediction_loss_only`: True
1164
+ - `per_device_train_batch_size`: 256
1165
+ - `per_device_eval_batch_size`: 256
1166
+ - `per_gpu_train_batch_size`: None
1167
+ - `per_gpu_eval_batch_size`: None
1168
+ - `gradient_accumulation_steps`: 1
1169
+ - `eval_accumulation_steps`: None
1170
+ - `torch_empty_cache_steps`: None
1171
+ - `learning_rate`: 2e-05
1172
+ - `weight_decay`: 0.0
1173
+ - `adam_beta1`: 0.9
1174
+ - `adam_beta2`: 0.999
1175
+ - `adam_epsilon`: 1e-08
1176
+ - `max_grad_norm`: 1.0
1177
+ - `num_train_epochs`: 1
1178
+ - `max_steps`: -1
1179
+ - `lr_scheduler_type`: linear
1180
+ - `lr_scheduler_kwargs`: {}
1181
+ - `warmup_ratio`: 0.1
1182
+ - `warmup_steps`: 0
1183
+ - `log_level`: passive
1184
+ - `log_level_replica`: warning
1185
+ - `log_on_each_node`: True
1186
+ - `logging_nan_inf_filter`: True
1187
+ - `save_safetensors`: True
1188
+ - `save_on_each_node`: False
1189
+ - `save_only_model`: False
1190
+ - `restore_callback_states_from_checkpoint`: False
1191
+ - `no_cuda`: False
1192
+ - `use_cpu`: False
1193
+ - `use_mps_device`: False
1194
+ - `seed`: 12
1195
+ - `data_seed`: None
1196
+ - `jit_mode_eval`: False
1197
+ - `use_ipex`: False
1198
+ - `bf16`: True
1199
+ - `fp16`: False
1200
+ - `fp16_opt_level`: O1
1201
+ - `half_precision_backend`: auto
1202
+ - `bf16_full_eval`: False
1203
+ - `fp16_full_eval`: False
1204
+ - `tf32`: None
1205
+ - `local_rank`: 0
1206
+ - `ddp_backend`: None
1207
+ - `tpu_num_cores`: None
1208
+ - `tpu_metrics_debug`: False
1209
+ - `debug`: []
1210
+ - `dataloader_drop_last`: False
1211
+ - `dataloader_num_workers`: 0
1212
+ - `dataloader_prefetch_factor`: None
1213
+ - `past_index`: -1
1214
+ - `disable_tqdm`: False
1215
+ - `remove_unused_columns`: True
1216
+ - `label_names`: None
1217
+ - `load_best_model_at_end`: False
1218
+ - `ignore_data_skip`: False
1219
+ - `fsdp`: []
1220
+ - `fsdp_min_num_params`: 0
1221
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1222
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1223
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1224
+ - `deepspeed`: None
1225
+ - `label_smoothing_factor`: 0.0
1226
+ - `optim`: adamw_torch
1227
+ - `optim_args`: None
1228
+ - `adafactor`: False
1229
+ - `group_by_length`: False
1230
+ - `length_column_name`: length
1231
+ - `ddp_find_unused_parameters`: None
1232
+ - `ddp_bucket_cap_mb`: None
1233
+ - `ddp_broadcast_buffers`: False
1234
+ - `dataloader_pin_memory`: True
1235
+ - `dataloader_persistent_workers`: False
1236
+ - `skip_memory_metrics`: True
1237
+ - `use_legacy_prediction_loop`: False
1238
+ - `push_to_hub`: False
1239
+ - `resume_from_checkpoint`: None
1240
+ - `hub_model_id`: None
1241
+ - `hub_strategy`: every_save
1242
+ - `hub_private_repo`: False
1243
+ - `hub_always_push`: False
1244
+ - `gradient_checkpointing`: False
1245
+ - `gradient_checkpointing_kwargs`: None
1246
+ - `include_inputs_for_metrics`: False
1247
+ - `eval_do_concat_batches`: True
1248
+ - `fp16_backend`: auto
1249
+ - `push_to_hub_model_id`: None
1250
+ - `push_to_hub_organization`: None
1251
+ - `mp_parameters`:
1252
+ - `auto_find_batch_size`: False
1253
+ - `full_determinism`: False
1254
+ - `torchdynamo`: None
1255
+ - `ray_scope`: last
1256
+ - `ddp_timeout`: 1800
1257
+ - `torch_compile`: False
1258
+ - `torch_compile_backend`: None
1259
+ - `torch_compile_mode`: None
1260
+ - `dispatch_batches`: None
1261
+ - `split_batches`: None
1262
+ - `include_tokens_per_second`: False
1263
+ - `include_num_input_tokens_seen`: False
1264
+ - `neftune_noise_alpha`: None
1265
+ - `optim_target_modules`: None
1266
+ - `batch_eval_metrics`: False
1267
+ - `eval_on_start`: False
1268
+ - `use_liger_kernel`: False
1269
+ - `eval_use_gather_object`: False
1270
+ - `batch_sampler`: no_duplicates
1271
+ - `multi_dataset_batch_sampler`: proportional
1272
+
1273
+ </details>
1274
+
1275
+ ### Training Logs
1276
+ | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
1277
+ |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
1278
+ | 0 | 0 | - | - | 0.0442 | 0.0851 | 0.0326 | 0.0282 | 0.0625 | 0.0708 | 0.0262 | 0.0331 | 0.6747 | 0.0387 | 0.2764 | 0.0617 | 0.0721 | 0.1159 |
1279
+ | 0.0026 | 1 | 5.0875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1280
+ | 0.1289 | 50 | 2.0474 | 0.2481 | 0.2817 | 0.4560 | 0.6297 | 0.3893 | 0.4392 | 0.4501 | 0.1952 | 0.4191 | 0.8709 | 0.3251 | 0.5181 | 0.5186 | 0.4715 | 0.4588 |
1281
+ | 0.2577 | 100 | 0.2027 | 0.1365 | 0.2906 | 0.4798 | 0.6203 | 0.3737 | 0.4823 | 0.4927 | 0.2102 | 0.5126 | 0.9027 | 0.3347 | 0.5623 | 0.5201 | 0.4721 | 0.4811 |
1282
+ | 0.3866 | 150 | 0.14 | 0.1168 | 0.3237 | 0.4950 | 0.6585 | 0.4020 | 0.4912 | 0.5350 | 0.2362 | 0.5483 | 0.8920 | 0.3322 | 0.5817 | 0.5364 | 0.4739 | 0.5005 |
1283
+ | 0.5155 | 200 | 0.1253 | 0.1057 | 0.3334 | 0.4953 | 0.6676 | 0.3794 | 0.5071 | 0.5386 | 0.2416 | 0.5541 | 0.8771 | 0.3281 | 0.5820 | 0.5600 | 0.4737 | 0.5029 |
1284
+ | 0.6443 | 250 | 0.1305 | 0.1016 | 0.3252 | 0.4768 | 0.6554 | 0.3825 | 0.5010 | 0.5261 | 0.2395 | 0.5590 | 0.8878 | 0.3277 | 0.5922 | 0.5730 | 0.4624 | 0.5006 |
1285
+ | 0.7732 | 300 | 0.1183 | 0.0965 | 0.3111 | 0.4797 | 0.6638 | 0.3649 | 0.5166 | 0.5304 | 0.2236 | 0.5619 | 0.8889 | 0.3242 | 0.5809 | 0.5681 | 0.4615 | 0.4981 |
1286
+ | 0.9021 | 350 | 0.1102 | 0.0939 | 0.3223 | 0.4723 | 0.6682 | 0.3768 | 0.4964 | 0.5312 | 0.2307 | 0.5738 | 0.8890 | 0.3245 | 0.5873 | 0.5783 | 0.4622 | 0.5010 |
1287
+ | 1.0 | 388 | - | - | 0.3188 | 0.4730 | 0.6605 | 0.3864 | 0.4999 | 0.5319 | 0.2320 | 0.5749 | 0.8890 | 0.3265 | 0.5876 | 0.5767 | 0.4619 | 0.5015 |
1288
+
1289
+
1290
+ ### Environmental Impact
1291
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
1292
+ - **Energy Consumed**: 0.386 kWh
1293
+ - **Carbon Emitted**: 0.150 kg of CO2
1294
+ - **Hours Used**: 0.992 hours
1295
+
1296
+ ### Training Hardware
1297
+ - **On Cloud**: No
1298
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
1299
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
1300
+ - **RAM Size**: 31.78 GB
1301
+
1302
+ ### Framework Versions
1303
+ - Python: 3.11.6
1304
+ - Sentence Transformers: 3.3.0.dev0
1305
+ - Transformers: 4.45.2
1306
+ - PyTorch: 2.5.0+cu121
1307
+ - Accelerate: 1.0.0
1308
+ - Datasets: 2.20.0
1309
+ - Tokenizers: 0.20.1-dev.0
1310
+
1311
+ ## Citation
1312
+
1313
+ ### BibTeX
1314
+
1315
+ #### Sentence Transformers
1316
+ ```bibtex
1317
+ @inproceedings{reimers-2019-sentence-bert,
1318
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1319
+ author = "Reimers, Nils and Gurevych, Iryna",
1320
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1321
+ month = "11",
1322
+ year = "2019",
1323
+ publisher = "Association for Computational Linguistics",
1324
+ url = "https://arxiv.org/abs/1908.10084",
1325
+ }
1326
+ ```
1327
+
1328
+ #### CachedMultipleNegativesRankingLoss
1329
+ ```bibtex
1330
+ @misc{gao2021scaling,
1331
+ title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
1332
+ author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
1333
+ year={2021},
1334
+ eprint={2101.06983},
1335
+ archivePrefix={arXiv},
1336
+ primaryClass={cs.LG}
1337
+ }
1338
+ ```
1339
+
1340
+ <!--
1341
+ ## Glossary
1342
+
1343
+ *Clearly define terms in order to be accessible across audiences.*
1344
+ -->
1345
+
1346
+ <!--
1347
+ ## Model Card Authors
1348
+
1349
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1350
+ -->
1351
+
1352
+ <!--
1353
+ ## Model Card Contact
1354
+
1355
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1356
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0.dev0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:def4625c5a2d92abd6c3e579ef2d32b3dfc74805a7cc3544634a1167291c5057
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff