tomaarsen HF staff commited on
Commit
282807e
·
verified ·
1 Parent(s): 03206e9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc93e1f47a84a99ac1dfb344e50e071951389e3423d8c03a9abe9635f9d6f1c9
3
+ size 789116
README.md ADDED
@@ -0,0 +1,1042 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:MatryoshkaLoss
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: distilbert/distilroberta-base
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ - pearson_manhattan
16
+ - spearman_manhattan
17
+ - pearson_euclidean
18
+ - spearman_euclidean
19
+ - pearson_dot
20
+ - spearman_dot
21
+ - pearson_max
22
+ - spearman_max
23
+ widget:
24
+ - source_sentence: A baby is laughing.
25
+ sentences:
26
+ - The baby laughed in his car seat.
27
+ - A toddler walks down a hallway.
28
+ - Japan falls silent to mark 311 tragedy
29
+ - source_sentence: A woman is reading.
30
+ sentences:
31
+ - A woman is writing something.
32
+ - The man is in a deserted field.
33
+ - Obama urges no new sanctions on Iran
34
+ - source_sentence: A man is spitting.
35
+ sentences:
36
+ - A man is crying.
37
+ - A girl plays a wind instrument.
38
+ - Kids playing ball in the park.
39
+ - source_sentence: A man shoots a man.
40
+ sentences:
41
+ - A man is shooting off guns.
42
+ - A slow loris hanging on a cord.
43
+ - Finance minister promises no new taxes
44
+ - source_sentence: A boy is vacuuming.
45
+ sentences:
46
+ - A little boy is vacuuming the floor.
47
+ - A woman is applying eye shadow.
48
+ - Glorious triple-gold night for Britain
49
+ pipeline_tag: sentence-similarity
50
+ co2_eq_emissions:
51
+ emissions: 94.71657156591533
52
+ energy_consumed: 0.2436740010751561
53
+ source: codecarbon
54
+ training_type: fine-tuning
55
+ on_cloud: false
56
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
57
+ ram_total_size: 31.777088165283203
58
+ hours_used: 0.923
59
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
60
+ model-index:
61
+ - name: SentenceTransformer based on distilbert/distilroberta-base
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts dev 256
68
+ type: sts-dev-256
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.832978199459682
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.8449812730792539
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.8284059469034439
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.8314151253676515
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.8291459460248565
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.8319080532683886
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.7274279213358037
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.7358272455513368
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.832978199459682
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.8449812730792539
99
+ name: Spearman Max
100
+ - task:
101
+ type: semantic-similarity
102
+ name: Semantic Similarity
103
+ dataset:
104
+ name: sts dev 128
105
+ type: sts-dev-128
106
+ metrics:
107
+ - type: pearson_cosine
108
+ value: 0.8266436609310417
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.841563547795295
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.8250171666597236
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.8276544602820737
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.8255984422889996
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.828520082690129
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.7120095981036954
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.7163267085950832
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.8266436609310417
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.841563547795295
136
+ name: Spearman Max
137
+ - task:
138
+ type: semantic-similarity
139
+ name: Semantic Similarity
140
+ dataset:
141
+ name: sts dev 64
142
+ type: sts-dev-64
143
+ metrics:
144
+ - type: pearson_cosine
145
+ value: 0.817074395539638
146
+ name: Pearson Cosine
147
+ - type: spearman_cosine
148
+ value: 0.8355573303767316
149
+ name: Spearman Cosine
150
+ - type: pearson_manhattan
151
+ value: 0.8175610864074738
152
+ name: Pearson Manhattan
153
+ - type: spearman_manhattan
154
+ value: 0.8212543828500742
155
+ name: Spearman Manhattan
156
+ - type: pearson_euclidean
157
+ value: 0.8175058817585
158
+ name: Pearson Euclidean
159
+ - type: spearman_euclidean
160
+ value: 0.8216438541895171
161
+ name: Spearman Euclidean
162
+ - type: pearson_dot
163
+ value: 0.6852246329807953
164
+ name: Pearson Dot
165
+ - type: spearman_dot
166
+ value: 0.6861394760239012
167
+ name: Spearman Dot
168
+ - type: pearson_max
169
+ value: 0.8175610864074738
170
+ name: Pearson Max
171
+ - type: spearman_max
172
+ value: 0.8355573303767316
173
+ name: Spearman Max
174
+ - task:
175
+ type: semantic-similarity
176
+ name: Semantic Similarity
177
+ dataset:
178
+ name: sts dev 32
179
+ type: sts-dev-32
180
+ metrics:
181
+ - type: pearson_cosine
182
+ value: 0.7963856490231295
183
+ name: Pearson Cosine
184
+ - type: spearman_cosine
185
+ value: 0.8243820415687734
186
+ name: Spearman Cosine
187
+ - type: pearson_manhattan
188
+ value: 0.7982768947167747
189
+ name: Pearson Manhattan
190
+ - type: spearman_manhattan
191
+ value: 0.804919985023919
192
+ name: Spearman Manhattan
193
+ - type: pearson_euclidean
194
+ value: 0.800259304954162
195
+ name: Pearson Euclidean
196
+ - type: spearman_euclidean
197
+ value: 0.8069660671225415
198
+ name: Spearman Euclidean
199
+ - type: pearson_dot
200
+ value: 0.6311831976256888
201
+ name: Pearson Dot
202
+ - type: spearman_dot
203
+ value: 0.6277202377535699
204
+ name: Spearman Dot
205
+ - type: pearson_max
206
+ value: 0.800259304954162
207
+ name: Pearson Max
208
+ - type: spearman_max
209
+ value: 0.8243820415687734
210
+ name: Spearman Max
211
+ - task:
212
+ type: semantic-similarity
213
+ name: Semantic Similarity
214
+ dataset:
215
+ name: sts dev 16
216
+ type: sts-dev-16
217
+ metrics:
218
+ - type: pearson_cosine
219
+ value: 0.7401161630034654
220
+ name: Pearson Cosine
221
+ - type: spearman_cosine
222
+ value: 0.7871969780219474
223
+ name: Spearman Cosine
224
+ - type: pearson_manhattan
225
+ value: 0.7609788932639057
226
+ name: Pearson Manhattan
227
+ - type: spearman_manhattan
228
+ value: 0.7761115272699121
229
+ name: Spearman Manhattan
230
+ - type: pearson_euclidean
231
+ value: 0.7645256699036285
232
+ name: Pearson Euclidean
233
+ - type: spearman_euclidean
234
+ value: 0.7794348361665424
235
+ name: Spearman Euclidean
236
+ - type: pearson_dot
237
+ value: 0.5201701018366058
238
+ name: Pearson Dot
239
+ - type: spearman_dot
240
+ value: 0.511537896780009
241
+ name: Spearman Dot
242
+ - type: pearson_max
243
+ value: 0.7645256699036285
244
+ name: Pearson Max
245
+ - type: spearman_max
246
+ value: 0.7871969780219474
247
+ name: Spearman Max
248
+ - task:
249
+ type: semantic-similarity
250
+ name: Semantic Similarity
251
+ dataset:
252
+ name: sts test 256
253
+ type: sts-test-256
254
+ metrics:
255
+ - type: pearson_cosine
256
+ value: 0.8124139776213125
257
+ name: Pearson Cosine
258
+ - type: spearman_cosine
259
+ value: 0.8211087618006394
260
+ name: Spearman Cosine
261
+ - type: pearson_manhattan
262
+ value: 0.7835377144525455
263
+ name: Pearson Manhattan
264
+ - type: spearman_manhattan
265
+ value: 0.7821679937822867
266
+ name: Spearman Manhattan
267
+ - type: pearson_euclidean
268
+ value: 0.785247473429926
269
+ name: Pearson Euclidean
270
+ - type: spearman_euclidean
271
+ value: 0.7839505779526579
272
+ name: Spearman Euclidean
273
+ - type: pearson_dot
274
+ value: 0.5917356859640799
275
+ name: Pearson Dot
276
+ - type: spearman_dot
277
+ value: 0.5785063907246168
278
+ name: Spearman Dot
279
+ - type: pearson_max
280
+ value: 0.8124139776213125
281
+ name: Pearson Max
282
+ - type: spearman_max
283
+ value: 0.8211087618006394
284
+ name: Spearman Max
285
+ - task:
286
+ type: semantic-similarity
287
+ name: Semantic Similarity
288
+ dataset:
289
+ name: sts test 128
290
+ type: sts-test-128
291
+ metrics:
292
+ - type: pearson_cosine
293
+ value: 0.8079155052116238
294
+ name: Pearson Cosine
295
+ - type: spearman_cosine
296
+ value: 0.8190362316108264
297
+ name: Spearman Cosine
298
+ - type: pearson_manhattan
299
+ value: 0.7794841536695422
300
+ name: Pearson Manhattan
301
+ - type: spearman_manhattan
302
+ value: 0.7786315620445202
303
+ name: Spearman Manhattan
304
+ - type: pearson_euclidean
305
+ value: 0.781284034387115
306
+ name: Pearson Euclidean
307
+ - type: spearman_euclidean
308
+ value: 0.7812532216784576
309
+ name: Spearman Euclidean
310
+ - type: pearson_dot
311
+ value: 0.5714349767115854
312
+ name: Pearson Dot
313
+ - type: spearman_dot
314
+ value: 0.5601824337480018
315
+ name: Spearman Dot
316
+ - type: pearson_max
317
+ value: 0.8079155052116238
318
+ name: Pearson Max
319
+ - type: spearman_max
320
+ value: 0.8190362316108264
321
+ name: Spearman Max
322
+ - task:
323
+ type: semantic-similarity
324
+ name: Semantic Similarity
325
+ dataset:
326
+ name: sts test 64
327
+ type: sts-test-64
328
+ metrics:
329
+ - type: pearson_cosine
330
+ value: 0.7987987273687178
331
+ name: Pearson Cosine
332
+ - type: spearman_cosine
333
+ value: 0.8128864395227673
334
+ name: Spearman Cosine
335
+ - type: pearson_manhattan
336
+ value: 0.7727564778562619
337
+ name: Pearson Manhattan
338
+ - type: spearman_manhattan
339
+ value: 0.7727917251788465
340
+ name: Spearman Manhattan
341
+ - type: pearson_euclidean
342
+ value: 0.7734618345058613
343
+ name: Pearson Euclidean
344
+ - type: spearman_euclidean
345
+ value: 0.7751195654319647
346
+ name: Spearman Euclidean
347
+ - type: pearson_dot
348
+ value: 0.5397052344713898
349
+ name: Pearson Dot
350
+ - type: spearman_dot
351
+ value: 0.5279010425382445
352
+ name: Spearman Dot
353
+ - type: pearson_max
354
+ value: 0.7987987273687178
355
+ name: Pearson Max
356
+ - type: spearman_max
357
+ value: 0.8128864395227673
358
+ name: Spearman Max
359
+ - task:
360
+ type: semantic-similarity
361
+ name: Semantic Similarity
362
+ dataset:
363
+ name: sts test 32
364
+ type: sts-test-32
365
+ metrics:
366
+ - type: pearson_cosine
367
+ value: 0.7720012222035324
368
+ name: Pearson Cosine
369
+ - type: spearman_cosine
370
+ value: 0.7936423982593883
371
+ name: Spearman Cosine
372
+ - type: pearson_manhattan
373
+ value: 0.7561303110063385
374
+ name: Pearson Manhattan
375
+ - type: spearman_manhattan
376
+ value: 0.7597271202292094
377
+ name: Spearman Manhattan
378
+ - type: pearson_euclidean
379
+ value: 0.7580804607973455
380
+ name: Pearson Euclidean
381
+ - type: spearman_euclidean
382
+ value: 0.7628041180101269
383
+ name: Spearman Euclidean
384
+ - type: pearson_dot
385
+ value: 0.48898156184384284
386
+ name: Pearson Dot
387
+ - type: spearman_dot
388
+ value: 0.47793665423562026
389
+ name: Spearman Dot
390
+ - type: pearson_max
391
+ value: 0.7720012222035324
392
+ name: Pearson Max
393
+ - type: spearman_max
394
+ value: 0.7936423982593883
395
+ name: Spearman Max
396
+ - task:
397
+ type: semantic-similarity
398
+ name: Semantic Similarity
399
+ dataset:
400
+ name: sts test 16
401
+ type: sts-test-16
402
+ metrics:
403
+ - type: pearson_cosine
404
+ value: 0.7137967594997888
405
+ name: Pearson Cosine
406
+ - type: spearman_cosine
407
+ value: 0.7485767932719462
408
+ name: Spearman Cosine
409
+ - type: pearson_manhattan
410
+ value: 0.7254358927069169
411
+ name: Pearson Manhattan
412
+ - type: spearman_manhattan
413
+ value: 0.7339448581065434
414
+ name: Spearman Manhattan
415
+ - type: pearson_euclidean
416
+ value: 0.7274341928076351
417
+ name: Pearson Euclidean
418
+ - type: spearman_euclidean
419
+ value: 0.7382083636772965
420
+ name: Spearman Euclidean
421
+ - type: pearson_dot
422
+ value: 0.385573703763858
423
+ name: Pearson Dot
424
+ - type: spearman_dot
425
+ value: 0.3749226996833225
426
+ name: Spearman Dot
427
+ - type: pearson_max
428
+ value: 0.7274341928076351
429
+ name: Pearson Max
430
+ - type: spearman_max
431
+ value: 0.7485767932719462
432
+ name: Spearman Max
433
+ ---
434
+
435
+ # SentenceTransformer based on distilbert/distilroberta-base
436
+
437
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
438
+
439
+ ## Model Details
440
+
441
+ ### Model Description
442
+ - **Model Type:** Sentence Transformer
443
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
444
+ - **Maximum Sequence Length:** 512 tokens
445
+ - **Output Dimensionality:** 256 tokens
446
+ - **Similarity Function:** Cosine Similarity
447
+ - **Training Dataset:**
448
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
449
+ - **Language:** en
450
+ <!-- - **License:** Unknown -->
451
+
452
+ ### Model Sources
453
+
454
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
455
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
456
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
457
+
458
+ ### Full Model Architecture
459
+
460
+ ```
461
+ SentenceTransformer(
462
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
463
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
464
+ (reduced_dim): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
465
+ )
466
+ ```
467
+
468
+ ## Usage
469
+
470
+ ### Direct Usage (Sentence Transformers)
471
+
472
+ First install the Sentence Transformers library:
473
+
474
+ ```bash
475
+ pip install -U sentence-transformers
476
+ ```
477
+
478
+ Then you can load this model and run inference.
479
+ ```python
480
+ from sentence_transformers import SentenceTransformer
481
+
482
+ # Download from the 🤗 Hub
483
+ model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-reduced")
484
+ # Run inference
485
+ sentences = [
486
+ 'A boy is vacuuming.',
487
+ 'A little boy is vacuuming the floor.',
488
+ 'A woman is applying eye shadow.',
489
+ ]
490
+ embeddings = model.encode(sentences)
491
+ print(embeddings.shape)
492
+ # [3, 256]
493
+
494
+ # Get the similarity scores for the embeddings
495
+ similarities = model.similarity(embeddings)
496
+ print(similarities.shape)
497
+ # [3, 3]
498
+ ```
499
+
500
+ <!--
501
+ ### Direct Usage (Transformers)
502
+
503
+ <details><summary>Click to see the direct usage in Transformers</summary>
504
+
505
+ </details>
506
+ -->
507
+
508
+ <!--
509
+ ### Downstream Usage (Sentence Transformers)
510
+
511
+ You can finetune this model on your own dataset.
512
+
513
+ <details><summary>Click to expand</summary>
514
+
515
+ </details>
516
+ -->
517
+
518
+ <!--
519
+ ### Out-of-Scope Use
520
+
521
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
522
+ -->
523
+
524
+ ## Evaluation
525
+
526
+ ### Metrics
527
+
528
+ #### Semantic Similarity
529
+ * Dataset: `sts-dev-256`
530
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
531
+
532
+ | Metric | Value |
533
+ |:--------------------|:----------|
534
+ | pearson_cosine | 0.833 |
535
+ | **spearman_cosine** | **0.845** |
536
+ | pearson_manhattan | 0.8284 |
537
+ | spearman_manhattan | 0.8314 |
538
+ | pearson_euclidean | 0.8291 |
539
+ | spearman_euclidean | 0.8319 |
540
+ | pearson_dot | 0.7274 |
541
+ | spearman_dot | 0.7358 |
542
+ | pearson_max | 0.833 |
543
+ | spearman_max | 0.845 |
544
+
545
+ #### Semantic Similarity
546
+ * Dataset: `sts-dev-128`
547
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
548
+
549
+ | Metric | Value |
550
+ |:--------------------|:-----------|
551
+ | pearson_cosine | 0.8266 |
552
+ | **spearman_cosine** | **0.8416** |
553
+ | pearson_manhattan | 0.825 |
554
+ | spearman_manhattan | 0.8277 |
555
+ | pearson_euclidean | 0.8256 |
556
+ | spearman_euclidean | 0.8285 |
557
+ | pearson_dot | 0.712 |
558
+ | spearman_dot | 0.7163 |
559
+ | pearson_max | 0.8266 |
560
+ | spearman_max | 0.8416 |
561
+
562
+ #### Semantic Similarity
563
+ * Dataset: `sts-dev-64`
564
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
565
+
566
+ | Metric | Value |
567
+ |:--------------------|:-----------|
568
+ | pearson_cosine | 0.8171 |
569
+ | **spearman_cosine** | **0.8356** |
570
+ | pearson_manhattan | 0.8176 |
571
+ | spearman_manhattan | 0.8213 |
572
+ | pearson_euclidean | 0.8175 |
573
+ | spearman_euclidean | 0.8216 |
574
+ | pearson_dot | 0.6852 |
575
+ | spearman_dot | 0.6861 |
576
+ | pearson_max | 0.8176 |
577
+ | spearman_max | 0.8356 |
578
+
579
+ #### Semantic Similarity
580
+ * Dataset: `sts-dev-32`
581
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
582
+
583
+ | Metric | Value |
584
+ |:--------------------|:-----------|
585
+ | pearson_cosine | 0.7964 |
586
+ | **spearman_cosine** | **0.8244** |
587
+ | pearson_manhattan | 0.7983 |
588
+ | spearman_manhattan | 0.8049 |
589
+ | pearson_euclidean | 0.8003 |
590
+ | spearman_euclidean | 0.807 |
591
+ | pearson_dot | 0.6312 |
592
+ | spearman_dot | 0.6277 |
593
+ | pearson_max | 0.8003 |
594
+ | spearman_max | 0.8244 |
595
+
596
+ #### Semantic Similarity
597
+ * Dataset: `sts-dev-16`
598
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
599
+
600
+ | Metric | Value |
601
+ |:--------------------|:-----------|
602
+ | pearson_cosine | 0.7401 |
603
+ | **spearman_cosine** | **0.7872** |
604
+ | pearson_manhattan | 0.761 |
605
+ | spearman_manhattan | 0.7761 |
606
+ | pearson_euclidean | 0.7645 |
607
+ | spearman_euclidean | 0.7794 |
608
+ | pearson_dot | 0.5202 |
609
+ | spearman_dot | 0.5115 |
610
+ | pearson_max | 0.7645 |
611
+ | spearman_max | 0.7872 |
612
+
613
+ #### Semantic Similarity
614
+ * Dataset: `sts-test-256`
615
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
616
+
617
+ | Metric | Value |
618
+ |:--------------------|:-----------|
619
+ | pearson_cosine | 0.8124 |
620
+ | **spearman_cosine** | **0.8211** |
621
+ | pearson_manhattan | 0.7835 |
622
+ | spearman_manhattan | 0.7822 |
623
+ | pearson_euclidean | 0.7852 |
624
+ | spearman_euclidean | 0.784 |
625
+ | pearson_dot | 0.5917 |
626
+ | spearman_dot | 0.5785 |
627
+ | pearson_max | 0.8124 |
628
+ | spearman_max | 0.8211 |
629
+
630
+ #### Semantic Similarity
631
+ * Dataset: `sts-test-128`
632
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
633
+
634
+ | Metric | Value |
635
+ |:--------------------|:----------|
636
+ | pearson_cosine | 0.8079 |
637
+ | **spearman_cosine** | **0.819** |
638
+ | pearson_manhattan | 0.7795 |
639
+ | spearman_manhattan | 0.7786 |
640
+ | pearson_euclidean | 0.7813 |
641
+ | spearman_euclidean | 0.7813 |
642
+ | pearson_dot | 0.5714 |
643
+ | spearman_dot | 0.5602 |
644
+ | pearson_max | 0.8079 |
645
+ | spearman_max | 0.819 |
646
+
647
+ #### Semantic Similarity
648
+ * Dataset: `sts-test-64`
649
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
650
+
651
+ | Metric | Value |
652
+ |:--------------------|:-----------|
653
+ | pearson_cosine | 0.7988 |
654
+ | **spearman_cosine** | **0.8129** |
655
+ | pearson_manhattan | 0.7728 |
656
+ | spearman_manhattan | 0.7728 |
657
+ | pearson_euclidean | 0.7735 |
658
+ | spearman_euclidean | 0.7751 |
659
+ | pearson_dot | 0.5397 |
660
+ | spearman_dot | 0.5279 |
661
+ | pearson_max | 0.7988 |
662
+ | spearman_max | 0.8129 |
663
+
664
+ #### Semantic Similarity
665
+ * Dataset: `sts-test-32`
666
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
667
+
668
+ | Metric | Value |
669
+ |:--------------------|:-----------|
670
+ | pearson_cosine | 0.772 |
671
+ | **spearman_cosine** | **0.7936** |
672
+ | pearson_manhattan | 0.7561 |
673
+ | spearman_manhattan | 0.7597 |
674
+ | pearson_euclidean | 0.7581 |
675
+ | spearman_euclidean | 0.7628 |
676
+ | pearson_dot | 0.489 |
677
+ | spearman_dot | 0.4779 |
678
+ | pearson_max | 0.772 |
679
+ | spearman_max | 0.7936 |
680
+
681
+ #### Semantic Similarity
682
+ * Dataset: `sts-test-16`
683
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
684
+
685
+ | Metric | Value |
686
+ |:--------------------|:-----------|
687
+ | pearson_cosine | 0.7138 |
688
+ | **spearman_cosine** | **0.7486** |
689
+ | pearson_manhattan | 0.7254 |
690
+ | spearman_manhattan | 0.7339 |
691
+ | pearson_euclidean | 0.7274 |
692
+ | spearman_euclidean | 0.7382 |
693
+ | pearson_dot | 0.3856 |
694
+ | spearman_dot | 0.3749 |
695
+ | pearson_max | 0.7274 |
696
+ | spearman_max | 0.7486 |
697
+
698
+ <!--
699
+ ## Bias, Risks and Limitations
700
+
701
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
702
+ -->
703
+
704
+ <!--
705
+ ### Recommendations
706
+
707
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
708
+ -->
709
+
710
+ ## Training Details
711
+
712
+ ### Training Dataset
713
+
714
+ #### sentence-transformers/all-nli
715
+
716
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe)
717
+ * Size: 557,850 training samples
718
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
719
+ * Approximate statistics based on the first 1000 samples:
720
+ | | anchor | positive | negative |
721
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
722
+ | type | string | string | string |
723
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
724
+ * Samples:
725
+ | anchor | positive | negative |
726
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
727
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
728
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
729
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
730
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
731
+ ```json
732
+ {
733
+ "loss": "MultipleNegativesRankingLoss",
734
+ "matryoshka_dims": [
735
+ 256,
736
+ 128,
737
+ 64,
738
+ 32,
739
+ 16
740
+ ],
741
+ "matryoshka_weights": [
742
+ 1,
743
+ 1,
744
+ 1,
745
+ 1,
746
+ 1
747
+ ],
748
+ "n_dims_per_step": -1
749
+ }
750
+ ```
751
+
752
+ ### Evaluation Dataset
753
+
754
+ #### sentence-transformers/stsb
755
+
756
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
757
+ * Size: 1,500 evaluation samples
758
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
759
+ * Approximate statistics based on the first 1000 samples:
760
+ | | sentence1 | sentence2 | score |
761
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
762
+ | type | string | string | float |
763
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.0 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
764
+ * Samples:
765
+ | sentence1 | sentence2 | score |
766
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
767
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
768
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
769
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
770
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
771
+ ```json
772
+ {
773
+ "loss": "MultipleNegativesRankingLoss",
774
+ "matryoshka_dims": [
775
+ 256,
776
+ 128,
777
+ 64,
778
+ 32,
779
+ 16
780
+ ],
781
+ "matryoshka_weights": [
782
+ 1,
783
+ 1,
784
+ 1,
785
+ 1,
786
+ 1
787
+ ],
788
+ "n_dims_per_step": -1
789
+ }
790
+ ```
791
+
792
+ ### Training Hyperparameters
793
+ #### Non-Default Hyperparameters
794
+
795
+ - `eval_strategy`: steps
796
+ - `per_device_train_batch_size`: 128
797
+ - `per_device_eval_batch_size`: 128
798
+ - `num_train_epochs`: 1
799
+ - `warmup_ratio`: 0.1
800
+ - `fp16`: True
801
+ - `batch_sampler`: no_duplicates
802
+
803
+ #### All Hyperparameters
804
+ <details><summary>Click to expand</summary>
805
+
806
+ - `overwrite_output_dir`: False
807
+ - `do_predict`: False
808
+ - `eval_strategy`: steps
809
+ - `prediction_loss_only`: False
810
+ - `per_device_train_batch_size`: 128
811
+ - `per_device_eval_batch_size`: 128
812
+ - `per_gpu_train_batch_size`: None
813
+ - `per_gpu_eval_batch_size`: None
814
+ - `gradient_accumulation_steps`: 1
815
+ - `eval_accumulation_steps`: None
816
+ - `learning_rate`: 5e-05
817
+ - `weight_decay`: 0.0
818
+ - `adam_beta1`: 0.9
819
+ - `adam_beta2`: 0.999
820
+ - `adam_epsilon`: 1e-08
821
+ - `max_grad_norm`: 1.0
822
+ - `num_train_epochs`: 1
823
+ - `max_steps`: -1
824
+ - `lr_scheduler_type`: linear
825
+ - `lr_scheduler_kwargs`: {}
826
+ - `warmup_ratio`: 0.1
827
+ - `warmup_steps`: 0
828
+ - `log_level`: passive
829
+ - `log_level_replica`: warning
830
+ - `log_on_each_node`: True
831
+ - `logging_nan_inf_filter`: True
832
+ - `save_safetensors`: True
833
+ - `save_on_each_node`: False
834
+ - `save_only_model`: False
835
+ - `no_cuda`: False
836
+ - `use_cpu`: False
837
+ - `use_mps_device`: False
838
+ - `seed`: 42
839
+ - `data_seed`: None
840
+ - `jit_mode_eval`: False
841
+ - `use_ipex`: False
842
+ - `bf16`: False
843
+ - `fp16`: True
844
+ - `fp16_opt_level`: O1
845
+ - `half_precision_backend`: auto
846
+ - `bf16_full_eval`: False
847
+ - `fp16_full_eval`: False
848
+ - `tf32`: None
849
+ - `local_rank`: 0
850
+ - `ddp_backend`: None
851
+ - `tpu_num_cores`: None
852
+ - `tpu_metrics_debug`: False
853
+ - `debug`: []
854
+ - `dataloader_drop_last`: False
855
+ - `dataloader_num_workers`: 0
856
+ - `dataloader_prefetch_factor`: None
857
+ - `past_index`: -1
858
+ - `disable_tqdm`: False
859
+ - `remove_unused_columns`: True
860
+ - `label_names`: None
861
+ - `load_best_model_at_end`: False
862
+ - `ignore_data_skip`: False
863
+ - `fsdp`: []
864
+ - `fsdp_min_num_params`: 0
865
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
866
+ - `fsdp_transformer_layer_cls_to_wrap`: None
867
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
868
+ - `deepspeed`: None
869
+ - `label_smoothing_factor`: 0.0
870
+ - `optim`: adamw_torch
871
+ - `optim_args`: None
872
+ - `adafactor`: False
873
+ - `group_by_length`: False
874
+ - `length_column_name`: length
875
+ - `ddp_find_unused_parameters`: None
876
+ - `ddp_bucket_cap_mb`: None
877
+ - `ddp_broadcast_buffers`: None
878
+ - `dataloader_pin_memory`: True
879
+ - `dataloader_persistent_workers`: False
880
+ - `skip_memory_metrics`: True
881
+ - `use_legacy_prediction_loop`: False
882
+ - `push_to_hub`: False
883
+ - `resume_from_checkpoint`: None
884
+ - `hub_model_id`: None
885
+ - `hub_strategy`: every_save
886
+ - `hub_private_repo`: False
887
+ - `hub_always_push`: False
888
+ - `gradient_checkpointing`: False
889
+ - `gradient_checkpointing_kwargs`: None
890
+ - `include_inputs_for_metrics`: False
891
+ - `eval_do_concat_batches`: True
892
+ - `fp16_backend`: auto
893
+ - `push_to_hub_model_id`: None
894
+ - `push_to_hub_organization`: None
895
+ - `mp_parameters`:
896
+ - `auto_find_batch_size`: False
897
+ - `full_determinism`: False
898
+ - `torchdynamo`: None
899
+ - `ray_scope`: last
900
+ - `ddp_timeout`: 1800
901
+ - `torch_compile`: False
902
+ - `torch_compile_backend`: None
903
+ - `torch_compile_mode`: None
904
+ - `dispatch_batches`: None
905
+ - `split_batches`: None
906
+ - `include_tokens_per_second`: False
907
+ - `include_num_input_tokens_seen`: False
908
+ - `neftune_noise_alpha`: None
909
+ - `optim_target_modules`: None
910
+ - `batch_sampler`: no_duplicates
911
+ - `multi_dataset_batch_sampler`: proportional
912
+
913
+ </details>
914
+
915
+ ### Training Logs
916
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-64_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-64_spearman_cosine |
917
+ |:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:--------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:---------------------------:|
918
+ | 0.0229 | 100 | 21.0363 | 14.2448 | 0.7856 | 0.7417 | 0.7873 | 0.7751 | 0.7846 | - | - | - | - | - |
919
+ | 0.0459 | 200 | 11.1093 | 13.4736 | 0.7877 | 0.7298 | 0.7861 | 0.7687 | 0.7798 | - | - | - | - | - |
920
+ | 0.0688 | 300 | 10.1847 | 13.7191 | 0.7877 | 0.7284 | 0.7898 | 0.7617 | 0.7755 | - | - | - | - | - |
921
+ | 0.0918 | 400 | 9.356 | 13.2955 | 0.7906 | 0.7385 | 0.7914 | 0.7715 | 0.7799 | - | - | - | - | - |
922
+ | 0.1147 | 500 | 8.9318 | 12.8099 | 0.7889 | 0.7346 | 0.7910 | 0.7690 | 0.7801 | - | - | - | - | - |
923
+ | 0.1376 | 600 | 8.5293 | 13.7384 | 0.7814 | 0.7362 | 0.7866 | 0.7656 | 0.7736 | - | - | - | - | - |
924
+ | 0.1606 | 700 | 8.7589 | 13.4466 | 0.7899 | 0.7467 | 0.7945 | 0.7770 | 0.7847 | - | - | - | - | - |
925
+ | 0.1835 | 800 | 7.7941 | 13.6734 | 0.7960 | 0.7526 | 0.7986 | 0.7800 | 0.7894 | - | - | - | - | - |
926
+ | 0.2065 | 900 | 7.9183 | 12.9082 | 0.7885 | 0.7470 | 0.7966 | 0.7705 | 0.7803 | - | - | - | - | - |
927
+ | 0.2294 | 1000 | 7.3669 | 13.2827 | 0.7751 | 0.7181 | 0.7822 | 0.7557 | 0.7675 | - | - | - | - | - |
928
+ | 0.2524 | 1100 | 7.6205 | 13.0227 | 0.7875 | 0.7373 | 0.7914 | 0.7730 | 0.7828 | - | - | - | - | - |
929
+ | 0.2753 | 1200 | 7.4308 | 13.4980 | 0.7844 | 0.7373 | 0.7890 | 0.7709 | 0.7755 | - | - | - | - | - |
930
+ | 0.2982 | 1300 | 7.3625 | 12.8380 | 0.7984 | 0.7520 | 0.8032 | 0.7824 | 0.7915 | - | - | - | - | - |
931
+ | 0.3212 | 1400 | 6.9421 | 12.7016 | 0.7912 | 0.7358 | 0.7960 | 0.7749 | 0.7850 | - | - | - | - | - |
932
+ | 0.3441 | 1500 | 7.0635 | 13.2198 | 0.8018 | 0.7578 | 0.8070 | 0.7861 | 0.7961 | - | - | - | - | - |
933
+ | 0.3671 | 1600 | 6.6682 | 13.3225 | 0.7906 | 0.7522 | 0.7944 | 0.7763 | 0.7849 | - | - | - | - | - |
934
+ | 0.3900 | 1700 | 6.42 | 12.7381 | 0.7984 | 0.7449 | 0.8021 | 0.7806 | 0.7911 | - | - | - | - | - |
935
+ | 0.4129 | 1800 | 6.659 | 13.0247 | 0.7947 | 0.7461 | 0.8002 | 0.7808 | 0.7876 | - | - | - | - | - |
936
+ | 0.4359 | 1900 | 6.1664 | 12.6814 | 0.7893 | 0.7312 | 0.7959 | 0.7700 | 0.7807 | - | - | - | - | - |
937
+ | 0.4588 | 2000 | 6.392 | 13.0238 | 0.7935 | 0.7354 | 0.7987 | 0.7758 | 0.7860 | - | - | - | - | - |
938
+ | 0.4818 | 2100 | 6.177 | 12.8833 | 0.7891 | 0.7428 | 0.7924 | 0.7723 | 0.7801 | - | - | - | - | - |
939
+ | 0.5047 | 2200 | 6.0411 | 12.5269 | 0.7836 | 0.7400 | 0.7875 | 0.7664 | 0.7765 | - | - | - | - | - |
940
+ | 0.5276 | 2300 | 6.1506 | 13.4349 | 0.7741 | 0.7350 | 0.7803 | 0.7556 | 0.7634 | - | - | - | - | - |
941
+ | 0.5506 | 2400 | 6.109 | 12.6996 | 0.7808 | 0.7326 | 0.7860 | 0.7663 | 0.7735 | - | - | - | - | - |
942
+ | 0.5735 | 2500 | 6.2849 | 13.2831 | 0.7874 | 0.7365 | 0.7932 | 0.7727 | 0.7794 | - | - | - | - | - |
943
+ | 0.5965 | 2600 | 6.0658 | 12.9425 | 0.7988 | 0.7481 | 0.8042 | 0.7818 | 0.7889 | - | - | - | - | - |
944
+ | 0.6194 | 2700 | 6.0646 | 13.0144 | 0.7965 | 0.7509 | 0.8010 | 0.7800 | 0.7875 | - | - | - | - | - |
945
+ | 0.6423 | 2800 | 6.0795 | 12.7602 | 0.7912 | 0.7472 | 0.7937 | 0.7778 | 0.7818 | - | - | - | - | - |
946
+ | 0.6653 | 2900 | 6.2407 | 13.2381 | 0.7829 | 0.7381 | 0.7873 | 0.7664 | 0.7765 | - | - | - | - | - |
947
+ | 0.6882 | 3000 | 6.1872 | 12.9064 | 0.7942 | 0.7516 | 0.7965 | 0.7793 | 0.7857 | - | - | - | - | - |
948
+ | 0.7112 | 3100 | 5.8987 | 12.9323 | 0.8065 | 0.7585 | 0.8087 | 0.7909 | 0.7989 | - | - | - | - | - |
949
+ | 0.7341 | 3200 | 5.996 | 13.1017 | 0.7971 | 0.7566 | 0.8005 | 0.7811 | 0.7889 | - | - | - | - | - |
950
+ | 0.7571 | 3300 | 5.3748 | 12.7601 | 0.8398 | 0.7881 | 0.8441 | 0.8232 | 0.8337 | - | - | - | - | - |
951
+ | 0.7800 | 3400 | 4.0798 | 12.7221 | 0.8400 | 0.7908 | 0.8440 | 0.8255 | 0.8342 | - | - | - | - | - |
952
+ | 0.8029 | 3500 | 3.6024 | 12.5445 | 0.8408 | 0.7892 | 0.8447 | 0.8247 | 0.8347 | - | - | - | - | - |
953
+ | 0.8259 | 3600 | 3.4619 | 12.6025 | 0.8405 | 0.7883 | 0.8442 | 0.8255 | 0.8347 | - | - | - | - | - |
954
+ | 0.8488 | 3700 | 3.2288 | 12.6636 | 0.8388 | 0.7872 | 0.8433 | 0.8226 | 0.8330 | - | - | - | - | - |
955
+ | 0.8718 | 3800 | 3.0543 | 12.6475 | 0.8386 | 0.7834 | 0.8427 | 0.8229 | 0.8330 | - | - | - | - | - |
956
+ | 0.8947 | 3900 | 3.0368 | 12.5390 | 0.8407 | 0.7845 | 0.8444 | 0.8227 | 0.8346 | - | - | - | - | - |
957
+ | 0.9176 | 4000 | 2.9591 | 12.5709 | 0.8419 | 0.7864 | 0.8456 | 0.8245 | 0.8359 | - | - | - | - | - |
958
+ | 0.9406 | 4100 | 2.944 | 12.6029 | 0.8415 | 0.7868 | 0.8452 | 0.8245 | 0.8359 | - | - | - | - | - |
959
+ | 0.9635 | 4200 | 2.9032 | 12.5514 | 0.8423 | 0.7888 | 0.8455 | 0.8254 | 0.8363 | - | - | - | - | - |
960
+ | 0.9865 | 4300 | 2.838 | 12.6054 | 0.8416 | 0.7872 | 0.8450 | 0.8244 | 0.8356 | - | - | - | - | - |
961
+ | 1.0 | 4359 | - | - | - | - | - | - | - | 0.8190 | 0.7486 | 0.8211 | 0.7936 | 0.8129 |
962
+
963
+
964
+ ### Environmental Impact
965
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
966
+ - **Energy Consumed**: 0.244 kWh
967
+ - **Carbon Emitted**: 0.095 kg of CO2
968
+ - **Hours Used**: 0.923 hours
969
+
970
+ ### Training Hardware
971
+ - **On Cloud**: No
972
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
973
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
974
+ - **RAM Size**: 31.78 GB
975
+
976
+ ### Framework Versions
977
+ - Python: 3.11.6
978
+ - Sentence Transformers: 3.0.0.dev0
979
+ - Transformers: 4.41.0.dev0
980
+ - PyTorch: 2.3.0+cu121
981
+ - Accelerate: 0.26.1
982
+ - Datasets: 2.18.0
983
+ - Tokenizers: 0.19.1
984
+
985
+ ## Citation
986
+
987
+ ### BibTeX
988
+
989
+ #### Sentence Transformers
990
+ ```bibtex
991
+ @inproceedings{reimers-2019-sentence-bert,
992
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
993
+ author = "Reimers, Nils and Gurevych, Iryna",
994
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
995
+ month = "11",
996
+ year = "2019",
997
+ publisher = "Association for Computational Linguistics",
998
+ url = "https://arxiv.org/abs/1908.10084",
999
+ }
1000
+ ```
1001
+
1002
+ #### MatryoshkaLoss
1003
+ ```bibtex
1004
+ @misc{kusupati2024matryoshka,
1005
+ title={Matryoshka Representation Learning},
1006
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1007
+ year={2024},
1008
+ eprint={2205.13147},
1009
+ archivePrefix={arXiv},
1010
+ primaryClass={cs.LG}
1011
+ }
1012
+ ```
1013
+
1014
+ #### MultipleNegativesRankingLoss
1015
+ ```bibtex
1016
+ @misc{henderson2017efficient,
1017
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1018
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1019
+ year={2017},
1020
+ eprint={1705.00652},
1021
+ archivePrefix={arXiv},
1022
+ primaryClass={cs.CL}
1023
+ }
1024
+ ```
1025
+
1026
+ <!--
1027
+ ## Glossary
1028
+
1029
+ *Clearly define terms in order to be accessible across audiences.*
1030
+ -->
1031
+
1032
+ <!--
1033
+ ## Model Card Authors
1034
+
1035
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1036
+ -->
1037
+
1038
+ <!--
1039
+ ## Model Card Contact
1040
+
1041
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1042
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8131f3531db0503718552167f99d59f23ab8b440f71be511726aaf0569d03b3
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "reduced_dim",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff