tomaarsen HF staff commited on
Commit
cc6732f
·
verified ·
1 Parent(s): 1360774

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:160436
8
+ - loss:DenoisingAutoEncoderLoss
9
+ base_model: google-bert/bert-base-uncased
10
+ widget:
11
+ - source_sentence: how do i make evolution check and notify new emails , without keeping
12
+ main ui open ?
13
+ sentences:
14
+ - ppas be removed?
15
+ - how set serve as a samba primary controller pam modules to authenticate against?
16
+ - how do make check and notify new emails keeping
17
+ - source_sentence: setting http proxy in awesome wm
18
+ sentences:
19
+ - on 10.04 on p series?
20
+ - setting http proxy awesome wm
21
+ - mean package is "set to installed?
22
+ - source_sentence: what is ubuntu advantage ?
23
+ sentences:
24
+ - is advantage?
25
+ - how turn calling on f1
26
+ - is utnubu?
27
+ - source_sentence: is there a way to check hardware integrity ?
28
+ sentences:
29
+ - is there a way to hardware integrity?
30
+ - to change key ctrl
31
+ - software is to tv card
32
+ - source_sentence: how to fix ssl error from python apps ( urllib ) when behind https
33
+ proxy ?
34
+ sentences:
35
+ - windows started with archive
36
+ - upstart
37
+ - how to ssl from python () proxy
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - map
42
+ - mrr@10
43
+ - ndcg@10
44
+ co2_eq_emissions:
45
+ emissions: 74.02946721860093
46
+ energy_consumed: 0.19045301341027557
47
+ source: codecarbon
48
+ training_type: fine-tuning
49
+ on_cloud: false
50
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
51
+ ram_total_size: 31.777088165283203
52
+ hours_used: 0.64
53
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
54
+ model-index:
55
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
56
+ results:
57
+ - task:
58
+ type: reranking
59
+ name: Reranking
60
+ dataset:
61
+ name: AskUbuntu dev
62
+ type: AskUbuntu-dev
63
+ metrics:
64
+ - type: map
65
+ value: 0.5058158414596666
66
+ name: Map
67
+ - type: mrr@10
68
+ value: 0.6325571254142682
69
+ name: Mrr@10
70
+ - type: ndcg@10
71
+ value: 0.5529143206799554
72
+ name: Ndcg@10
73
+ - task:
74
+ type: reranking
75
+ name: Reranking
76
+ dataset:
77
+ name: AskUbuntu test
78
+ type: AskUbuntu-test
79
+ metrics:
80
+ - type: map
81
+ value: 0.5826205294809574
82
+ name: Map
83
+ - type: mrr@10
84
+ value: 0.7237319322514852
85
+ name: Mrr@10
86
+ - type: ndcg@10
87
+ value: 0.6303658219971641
88
+ name: Ndcg@10
89
+ ---
90
+
91
+ # SentenceTransformer based on google-bert/bert-base-uncased
92
+
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
+
95
+ ## Model Details
96
+
97
+ ### Model Description
98
+ - **Model Type:** Sentence Transformer
99
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
100
+ - **Maximum Sequence Length:** 75 tokens
101
+ - **Output Dimensionality:** 768 dimensions
102
+ - **Similarity Function:** Cosine Similarity
103
+ <!-- - **Training Dataset:** Unknown -->
104
+ <!-- - **Language:** Unknown -->
105
+ <!-- - **License:** Unknown -->
106
+
107
+ ### Model Sources
108
+
109
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
110
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
111
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
112
+
113
+ ### Full Model Architecture
114
+
115
+ ```
116
+ SentenceTransformer(
117
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
118
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
119
+ )
120
+ ```
121
+
122
+ ## Usage
123
+
124
+ ### Direct Usage (Sentence Transformers)
125
+
126
+ First install the Sentence Transformers library:
127
+
128
+ ```bash
129
+ pip install -U sentence-transformers
130
+ ```
131
+
132
+ Then you can load this model and run inference.
133
+ ```python
134
+ from sentence_transformers import SentenceTransformer
135
+
136
+ # Download from the 🤗 Hub
137
+ model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
138
+ # Run inference
139
+ sentences = [
140
+ 'how to fix ssl error from python apps ( urllib ) when behind https proxy ?',
141
+ 'how to ssl from python () proxy',
142
+ 'upstart',
143
+ ]
144
+ embeddings = model.encode(sentences)
145
+ print(embeddings.shape)
146
+ # [3, 768]
147
+
148
+ # Get the similarity scores for the embeddings
149
+ similarities = model.similarity(embeddings, embeddings)
150
+ print(similarities.shape)
151
+ # [3, 3]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ ## Evaluation
179
+
180
+ ### Metrics
181
+
182
+ #### Reranking
183
+
184
+ * Datasets: `AskUbuntu-dev` and `AskUbuntu-test`
185
+ * Evaluated with [<code>RerankingEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator)
186
+
187
+ | Metric | AskUbuntu-dev | AskUbuntu-test |
188
+ |:--------|:--------------|:---------------|
189
+ | **map** | **0.5058** | **0.5826** |
190
+ | mrr@10 | 0.6326 | 0.7237 |
191
+ | ndcg@10 | 0.5529 | 0.6304 |
192
+
193
+ <!--
194
+ ## Bias, Risks and Limitations
195
+
196
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
197
+ -->
198
+
199
+ <!--
200
+ ### Recommendations
201
+
202
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
203
+ -->
204
+
205
+ ## Training Details
206
+
207
+ ### Training Dataset
208
+
209
+ #### Unnamed Dataset
210
+
211
+ * Size: 160,436 training samples
212
+ * Columns: <code>text</code> and <code>noisy</code>
213
+ * Approximate statistics based on the first 1000 samples:
214
+ | | text | noisy |
215
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
216
+ | type | string | string |
217
+ | details | <ul><li>min: 5 tokens</li><li>mean: 14.43 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.47 tokens</li><li>max: 24 tokens</li></ul> |
218
+ * Samples:
219
+ | text | noisy |
220
+ |:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|
221
+ | <code>how to get the `` your battery is broken '' message to go away ?</code> | <code>to get the is broken go away?</code> |
222
+ | <code>how can i set the software center to install software for non-root users ?</code> | <code>how can i the center install non-root users</code> |
223
+ | <code>what are some alternatives to upgrading without using the standard upgrade system ?</code> | <code>what are alternatives to using standard system?</code> |
224
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
225
+
226
+ ### Training Hyperparameters
227
+ #### Non-Default Hyperparameters
228
+
229
+ - `eval_strategy`: steps
230
+ - `learning_rate`: 3e-05
231
+ - `num_train_epochs`: 1
232
+ - `warmup_ratio`: 0.1
233
+ - `fp16`: True
234
+
235
+ #### All Hyperparameters
236
+ <details><summary>Click to expand</summary>
237
+
238
+ - `overwrite_output_dir`: False
239
+ - `do_predict`: False
240
+ - `eval_strategy`: steps
241
+ - `prediction_loss_only`: True
242
+ - `per_device_train_batch_size`: 8
243
+ - `per_device_eval_batch_size`: 8
244
+ - `per_gpu_train_batch_size`: None
245
+ - `per_gpu_eval_batch_size`: None
246
+ - `gradient_accumulation_steps`: 1
247
+ - `eval_accumulation_steps`: None
248
+ - `torch_empty_cache_steps`: None
249
+ - `learning_rate`: 3e-05
250
+ - `weight_decay`: 0.0
251
+ - `adam_beta1`: 0.9
252
+ - `adam_beta2`: 0.999
253
+ - `adam_epsilon`: 1e-08
254
+ - `max_grad_norm`: 1.0
255
+ - `num_train_epochs`: 1
256
+ - `max_steps`: -1
257
+ - `lr_scheduler_type`: linear
258
+ - `lr_scheduler_kwargs`: {}
259
+ - `warmup_ratio`: 0.1
260
+ - `warmup_steps`: 0
261
+ - `log_level`: passive
262
+ - `log_level_replica`: warning
263
+ - `log_on_each_node`: True
264
+ - `logging_nan_inf_filter`: True
265
+ - `save_safetensors`: True
266
+ - `save_on_each_node`: False
267
+ - `save_only_model`: False
268
+ - `restore_callback_states_from_checkpoint`: False
269
+ - `no_cuda`: False
270
+ - `use_cpu`: False
271
+ - `use_mps_device`: False
272
+ - `seed`: 42
273
+ - `data_seed`: None
274
+ - `jit_mode_eval`: False
275
+ - `use_ipex`: False
276
+ - `bf16`: False
277
+ - `fp16`: True
278
+ - `fp16_opt_level`: O1
279
+ - `half_precision_backend`: auto
280
+ - `bf16_full_eval`: False
281
+ - `fp16_full_eval`: False
282
+ - `tf32`: None
283
+ - `local_rank`: 0
284
+ - `ddp_backend`: None
285
+ - `tpu_num_cores`: None
286
+ - `tpu_metrics_debug`: False
287
+ - `debug`: []
288
+ - `dataloader_drop_last`: False
289
+ - `dataloader_num_workers`: 0
290
+ - `dataloader_prefetch_factor`: None
291
+ - `past_index`: -1
292
+ - `disable_tqdm`: False
293
+ - `remove_unused_columns`: True
294
+ - `label_names`: None
295
+ - `load_best_model_at_end`: False
296
+ - `ignore_data_skip`: False
297
+ - `fsdp`: []
298
+ - `fsdp_min_num_params`: 0
299
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
300
+ - `fsdp_transformer_layer_cls_to_wrap`: None
301
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
302
+ - `deepspeed`: None
303
+ - `label_smoothing_factor`: 0.0
304
+ - `optim`: adamw_torch
305
+ - `optim_args`: None
306
+ - `adafactor`: False
307
+ - `group_by_length`: False
308
+ - `length_column_name`: length
309
+ - `ddp_find_unused_parameters`: None
310
+ - `ddp_bucket_cap_mb`: None
311
+ - `ddp_broadcast_buffers`: False
312
+ - `dataloader_pin_memory`: True
313
+ - `dataloader_persistent_workers`: False
314
+ - `skip_memory_metrics`: True
315
+ - `use_legacy_prediction_loop`: False
316
+ - `push_to_hub`: False
317
+ - `resume_from_checkpoint`: None
318
+ - `hub_model_id`: None
319
+ - `hub_strategy`: every_save
320
+ - `hub_private_repo`: None
321
+ - `hub_always_push`: False
322
+ - `gradient_checkpointing`: False
323
+ - `gradient_checkpointing_kwargs`: None
324
+ - `include_inputs_for_metrics`: False
325
+ - `include_for_metrics`: []
326
+ - `eval_do_concat_batches`: True
327
+ - `fp16_backend`: auto
328
+ - `push_to_hub_model_id`: None
329
+ - `push_to_hub_organization`: None
330
+ - `mp_parameters`:
331
+ - `auto_find_batch_size`: False
332
+ - `full_determinism`: False
333
+ - `torchdynamo`: None
334
+ - `ray_scope`: last
335
+ - `ddp_timeout`: 1800
336
+ - `torch_compile`: False
337
+ - `torch_compile_backend`: None
338
+ - `torch_compile_mode`: None
339
+ - `dispatch_batches`: None
340
+ - `split_batches`: None
341
+ - `include_tokens_per_second`: False
342
+ - `include_num_input_tokens_seen`: False
343
+ - `neftune_noise_alpha`: None
344
+ - `optim_target_modules`: None
345
+ - `batch_eval_metrics`: False
346
+ - `eval_on_start`: False
347
+ - `use_liger_kernel`: False
348
+ - `eval_use_gather_object`: False
349
+ - `average_tokens_across_devices`: False
350
+ - `prompts`: None
351
+ - `batch_sampler`: batch_sampler
352
+ - `multi_dataset_batch_sampler`: proportional
353
+
354
+ </details>
355
+
356
+ ### Training Logs
357
+ | Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map |
358
+ |:------:|:-----:|:-------------:|:-----------------:|:------------------:|
359
+ | -1 | -1 | - | 0.4151 | - |
360
+ | 0.0499 | 1000 | 6.1757 | - | - |
361
+ | 0.0997 | 2000 | 4.0925 | - | - |
362
+ | 0.1496 | 3000 | 3.2921 | - | - |
363
+ | 0.1995 | 4000 | 2.9046 | - | - |
364
+ | 0.2493 | 5000 | 2.669 | 0.5158 | - |
365
+ | 0.2992 | 6000 | 2.5884 | - | - |
366
+ | 0.3490 | 7000 | 2.437 | - | - |
367
+ | 0.3989 | 8000 | 2.3406 | - | - |
368
+ | 0.4488 | 9000 | 2.2709 | - | - |
369
+ | 0.4986 | 10000 | 2.1881 | 0.5131 | - |
370
+ | 0.5485 | 11000 | 2.1627 | - | - |
371
+ | 0.5984 | 12000 | 2.1055 | - | - |
372
+ | 0.6482 | 13000 | 2.0577 | - | - |
373
+ | 0.6981 | 14000 | 2.0133 | - | - |
374
+ | 0.7479 | 15000 | 1.9877 | 0.5130 | - |
375
+ | 0.7978 | 16000 | 1.9569 | - | - |
376
+ | 0.8477 | 17000 | 1.9219 | - | - |
377
+ | 0.8975 | 18000 | 1.9124 | - | - |
378
+ | 0.9474 | 19000 | 1.8676 | - | - |
379
+ | 0.9973 | 20000 | 1.8461 | 0.5058 | - |
380
+ | -1 | -1 | - | - | 0.5826 |
381
+
382
+
383
+ ### Environmental Impact
384
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
385
+ - **Energy Consumed**: 0.190 kWh
386
+ - **Carbon Emitted**: 0.074 kg of CO2
387
+ - **Hours Used**: 0.64 hours
388
+
389
+ ### Training Hardware
390
+ - **On Cloud**: No
391
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
392
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
393
+ - **RAM Size**: 31.78 GB
394
+
395
+ ### Framework Versions
396
+ - Python: 3.11.6
397
+ - Sentence Transformers: 3.4.0.dev0
398
+ - Transformers: 4.48.0.dev0
399
+ - PyTorch: 2.5.0+cu121
400
+ - Accelerate: 0.35.0.dev0
401
+ - Datasets: 2.20.0
402
+ - Tokenizers: 0.21.0
403
+
404
+ ## Citation
405
+
406
+ ### BibTeX
407
+
408
+ #### Sentence Transformers
409
+ ```bibtex
410
+ @inproceedings{reimers-2019-sentence-bert,
411
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
412
+ author = "Reimers, Nils and Gurevych, Iryna",
413
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
414
+ month = "11",
415
+ year = "2019",
416
+ publisher = "Association for Computational Linguistics",
417
+ url = "https://arxiv.org/abs/1908.10084",
418
+ }
419
+ ```
420
+
421
+ #### DenoisingAutoEncoderLoss
422
+ ```bibtex
423
+ @inproceedings{wang-2021-TSDAE,
424
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
425
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
426
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
427
+ month = nov,
428
+ year = "2021",
429
+ address = "Punta Cana, Dominican Republic",
430
+ publisher = "Association for Computational Linguistics",
431
+ pages = "671--688",
432
+ url = "https://arxiv.org/abs/2104.06979",
433
+ }
434
+ ```
435
+
436
+ <!--
437
+ ## Glossary
438
+
439
+ *Clearly define terms in order to be accessible across audiences.*
440
+ -->
441
+
442
+ <!--
443
+ ## Model Card Authors
444
+
445
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
446
+ -->
447
+
448
+ <!--
449
+ ## Model Card Contact
450
+
451
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
452
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.0.dev0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0.dev0",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b965f9a8ec681ecc06fe00207cc558be4e36e4c607be8185c215a4aa784b9e7f
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 75,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 75,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff