tollefj commited on
Commit
c39cb98
1 Parent(s): f2253f8

tollefj/nordic-ner

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: cc-by-sa-4.0
4
+ library_name: span-marker
5
+ tags:
6
+ - span-marker
7
+ - token-classification
8
+ - ner
9
+ - named-entity-recognition
10
+ - generated_from_span_marker_trainer
11
+ base_model: FacebookAI/xlm-roberta-base
12
+ datasets:
13
+ - norne
14
+ metrics:
15
+ - precision
16
+ - recall
17
+ - f1
18
+ widget:
19
+ - text: Av Boethius hand förelåg De institutione arithmetica (" Om aritmetikens grunder
20
+ ") i två böcker.
21
+ - text: Hans hovedmotstander var lederen for opposisjonspartiet Movement for Democratic
22
+ Change, Morgan Tsvangirai.
23
+ - text: Roddarn blir proffs efter OS.
24
+ - text: Han blev dog diskvalificeret for at have trådt på banelinjen, og bronzemedaljen
25
+ gik i stedet til landsmanden Walter Dix.
26
+ - text: Stillingen var på dette tidspunkt 1-1, men Almunias redning banede vejen for
27
+ et sejrsmål af danske Nicklas Bendtner.
28
+ pipeline_tag: token-classification
29
+ model-index:
30
+ - name: SpanMarker with FacebookAI/xlm-roberta-base on norne
31
+ results:
32
+ - task:
33
+ type: token-classification
34
+ name: Named Entity Recognition
35
+ dataset:
36
+ name: norne
37
+ type: norne
38
+ split: test
39
+ metrics:
40
+ - type: f1
41
+ value: 0.9181825779313034
42
+ name: F1
43
+ - type: precision
44
+ value: 0.9217689611454993
45
+ name: Precision
46
+ - type: recall
47
+ value: 0.9146239940801036
48
+ name: Recall
49
+ ---
50
+
51
+ # SpanMarker with FacebookAI/xlm-roberta-base on norne
52
+
53
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [norne](https://huggingface.co/datasets/norne) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) as the underlying encoder.
54
+
55
+ ## Model Details
56
+
57
+ ### Model Description
58
+ - **Model Type:** SpanMarker
59
+ - **Encoder:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
60
+ - **Maximum Sequence Length:** 256 tokens
61
+ - **Maximum Entity Length:** 8 words
62
+ - **Training Dataset:** [norne](https://huggingface.co/datasets/norne)
63
+ - **Language:** en
64
+ - **License:** cc-by-sa-4.0
65
+
66
+ ### Model Sources
67
+
68
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
69
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
70
+
71
+ ### Model Labels
72
+ | Label | Examples |
73
+ |:------|:-------------------------------------------------------------|
74
+ | LOC | "Gran", "Leicestershire", "Den tyske antarktisekspedisjonen" |
75
+ | MISC | "socialdemokratiske", "nationalist", "Living Legend" |
76
+ | ORG | "Stabæk", "Samlaget", "Marillion" |
77
+ | PER | "Fish", "Dmitrij Medvedev", "Guru Ardjan Dev" |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Precision | Recall | F1 |
83
+ |:--------|:----------|:-------|:-------|
84
+ | **all** | 0.9218 | 0.9146 | 0.9182 |
85
+ | LOC | 0.9284 | 0.9433 | 0.9358 |
86
+ | MISC | 0.6515 | 0.6047 | 0.6272 |
87
+ | ORG | 0.8951 | 0.8547 | 0.8745 |
88
+ | PER | 0.9513 | 0.9526 | 0.9520 |
89
+
90
+ ## Uses
91
+
92
+ ### Direct Use for Inference
93
+
94
+ ```python
95
+ from span_marker import SpanMarkerModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
99
+ # Run inference
100
+ entities = model.predict("Roddarn blir proffs efter OS.")
101
+ ```
102
+
103
+ ### Downstream Use
104
+ You can finetune this model on your own dataset.
105
+
106
+ <details><summary>Click to expand</summary>
107
+
108
+ ```python
109
+ from span_marker import SpanMarkerModel, Trainer
110
+
111
+ # Download from the 🤗 Hub
112
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
113
+
114
+ # Specify a Dataset with "tokens" and "ner_tag" columns
115
+ dataset = load_dataset("conll2003") # For example CoNLL2003
116
+
117
+ # Initialize a Trainer using the pretrained model & dataset
118
+ trainer = Trainer(
119
+ model=model,
120
+ train_dataset=dataset["train"],
121
+ eval_dataset=dataset["validation"],
122
+ )
123
+ trainer.train()
124
+ trainer.save_model("span_marker_model_id-finetuned")
125
+ ```
126
+ </details>
127
+
128
+ <!--
129
+ ### Out-of-Scope Use
130
+
131
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
132
+ -->
133
+
134
+ <!--
135
+ ## Bias, Risks and Limitations
136
+
137
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
138
+ -->
139
+
140
+ <!--
141
+ ### Recommendations
142
+
143
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
144
+ -->
145
+
146
+ ## Training Details
147
+
148
+ ### Training Set Metrics
149
+ | Training set | Min | Median | Max |
150
+ |:----------------------|:----|:--------|:----|
151
+ | Sentence length | 1 | 12.8175 | 331 |
152
+ | Entities per sentence | 0 | 1.0055 | 54 |
153
+
154
+ ### Training Hyperparameters
155
+ - learning_rate: 5e-05
156
+ - train_batch_size: 32
157
+ - eval_batch_size: 32
158
+ - seed: 42
159
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
160
+ - lr_scheduler_type: linear
161
+ - lr_scheduler_warmup_ratio: 0.1
162
+ - num_epochs: 3
163
+
164
+ ### Training Results
165
+ | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
166
+ |:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
167
+ | 0.5711 | 3000 | 0.0146 | 0.8650 | 0.8725 | 0.8687 | 0.9722 |
168
+ | 1.1422 | 6000 | 0.0123 | 0.8994 | 0.8920 | 0.8957 | 0.9778 |
169
+ | 1.7133 | 9000 | 0.0101 | 0.9184 | 0.8984 | 0.9083 | 0.9805 |
170
+ | 2.2844 | 12000 | 0.0101 | 0.9198 | 0.9110 | 0.9154 | 0.9818 |
171
+ | 2.8555 | 15000 | 0.0089 | 0.9245 | 0.9150 | 0.9197 | 0.9830 |
172
+
173
+ ### Framework Versions
174
+ - Python: 3.12.2
175
+ - SpanMarker: 1.5.0
176
+ - Transformers: 4.38.2
177
+ - PyTorch: 2.2.1+cu121
178
+ - Datasets: 2.18.0
179
+ - Tokenizers: 0.15.2
180
+
181
+ ## Citation
182
+
183
+ ### BibTeX
184
+ ```
185
+ @software{Aarsen_SpanMarker,
186
+ author = {Aarsen, Tom},
187
+ license = {Apache-2.0},
188
+ title = {{SpanMarker for Named Entity Recognition}},
189
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
190
+ }
191
+ ```
192
+
193
+ <!--
194
+ ## Glossary
195
+
196
+ *Clearly define terms in order to be accessible across audiences.*
197
+ -->
198
+
199
+ <!--
200
+ ## Model Card Authors
201
+
202
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
203
+ -->
204
+
205
+ <!--
206
+ ## Model Card Contact
207
+
208
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
209
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 250003,
3
+ "<start>": 250002
4
+ }
all_results.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "test_LOC": {
4
+ "f1": 0.9357663122097303,
5
+ "number": 19545,
6
+ "precision": 0.9283915802195589,
7
+ "recall": 0.9432591455615247
8
+ },
9
+ "test_MISC": {
10
+ "f1": 0.62724485326325,
11
+ "number": 1184,
12
+ "precision": 0.651501364877161,
13
+ "recall": 0.6047297297297297
14
+ },
15
+ "test_ORG": {
16
+ "f1": 0.8744594687349854,
17
+ "number": 14905,
18
+ "precision": 0.8951029298110026,
19
+ "recall": 0.8547467292854747
20
+ },
21
+ "test_PER": {
22
+ "f1": 0.9519624596522636,
23
+ "number": 18421,
24
+ "precision": 0.9513173587769707,
25
+ "recall": 0.952608436024103
26
+ },
27
+ "test_loss": 0.008724752813577652,
28
+ "test_overall_accuracy": 0.9835344213353552,
29
+ "test_overall_f1": 0.9181825779313034,
30
+ "test_overall_precision": 0.9217689611454993,
31
+ "test_overall_recall": 0.9146239940801036,
32
+ "test_runtime": 170.3172,
33
+ "test_samples_per_second": 305.401,
34
+ "test_steps_per_second": 9.547
35
+ }
config.json ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "FacebookAI/xlm-roberta-base",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "XLMRobertaForMaskedLM"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "gelu",
29
+ "hidden_dropout_prob": 0.1,
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "O",
33
+ "1": "B-PER",
34
+ "2": "I-PER",
35
+ "3": "B-ORG",
36
+ "4": "I-ORG",
37
+ "5": "B-LOC",
38
+ "6": "I-LOC",
39
+ "7": "B-MISC",
40
+ "8": "I-MISC"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 3072,
44
+ "is_decoder": false,
45
+ "is_encoder_decoder": false,
46
+ "label2id": {
47
+ "B-LOC": 5,
48
+ "B-MISC": 7,
49
+ "B-ORG": 3,
50
+ "B-PER": 1,
51
+ "I-LOC": 6,
52
+ "I-MISC": 8,
53
+ "I-ORG": 4,
54
+ "I-PER": 2,
55
+ "O": 0
56
+ },
57
+ "layer_norm_eps": 1e-05,
58
+ "length_penalty": 1.0,
59
+ "max_length": 20,
60
+ "max_position_embeddings": 514,
61
+ "min_length": 0,
62
+ "model_type": "xlm-roberta",
63
+ "no_repeat_ngram_size": 0,
64
+ "num_attention_heads": 12,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_hidden_layers": 12,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_past": true,
72
+ "output_scores": false,
73
+ "pad_token_id": 1,
74
+ "position_embedding_type": "absolute",
75
+ "prefix": null,
76
+ "problem_type": null,
77
+ "pruned_heads": {},
78
+ "remove_invalid_values": false,
79
+ "repetition_penalty": 1.0,
80
+ "return_dict": true,
81
+ "return_dict_in_generate": false,
82
+ "sep_token_id": null,
83
+ "suppress_tokens": null,
84
+ "task_specific_params": null,
85
+ "temperature": 1.0,
86
+ "tf_legacy_loss": false,
87
+ "tie_encoder_decoder": false,
88
+ "tie_word_embeddings": true,
89
+ "tokenizer_class": null,
90
+ "top_k": 50,
91
+ "top_p": 1.0,
92
+ "torch_dtype": null,
93
+ "torchscript": false,
94
+ "transformers_version": "4.38.2",
95
+ "type_vocab_size": 1,
96
+ "typical_p": 1.0,
97
+ "use_bfloat16": false,
98
+ "use_cache": true,
99
+ "vocab_size": 250008
100
+ },
101
+ "entity_max_length": 8,
102
+ "id2label": {
103
+ "0": "O",
104
+ "1": "LOC",
105
+ "2": "MISC",
106
+ "3": "ORG",
107
+ "4": "PER"
108
+ },
109
+ "id2reduced_id": {
110
+ "0": 0,
111
+ "1": 4,
112
+ "2": 4,
113
+ "3": 3,
114
+ "4": 3,
115
+ "5": 1,
116
+ "6": 1,
117
+ "7": 2,
118
+ "8": 2
119
+ },
120
+ "label2id": {
121
+ "LOC": 1,
122
+ "MISC": 2,
123
+ "O": 0,
124
+ "ORG": 3,
125
+ "PER": 4
126
+ },
127
+ "marker_max_length": 128,
128
+ "max_next_context": null,
129
+ "max_prev_context": null,
130
+ "model_max_length": 256,
131
+ "model_max_length_default": 512,
132
+ "model_type": "span-marker",
133
+ "span_marker_version": "1.5.0",
134
+ "torch_dtype": "float32",
135
+ "trained_with_document_context": false,
136
+ "transformers_version": "4.38.2",
137
+ "vocab_size": 250008
138
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ece745ad6003788541227e21d539b32aa94c3a91f7184730eb363bf41f5c612
3
+ size 1112248012
runs/Mar31_00-46-06_kontoret/events.out.tfevents.1711842441.kontoret.363807.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c0cdb385f065b2018a368fa5a5444fbd23c26a10a59cc06be643c1e61046844
3
+ size 20093
runs/Mar31_01-30-18_kontoret/events.out.tfevents.1711845134.kontoret.377829.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2034c6d5517d368f735e4dd2b625dfcb0703370dadcefe8db3918c0e19529e6a
3
+ size 76772
runs/Mar31_01-30-18_kontoret/events.out.tfevents.1711884700.kontoret.377829.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692e689dc375d575de891ad5119561ee37a7ed29944b904e23164603383ea693
3
+ size 1096
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
test_results.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "test_LOC": {
4
+ "f1": 0.9357663122097303,
5
+ "number": 19545,
6
+ "precision": 0.9283915802195589,
7
+ "recall": 0.9432591455615247
8
+ },
9
+ "test_MISC": {
10
+ "f1": 0.62724485326325,
11
+ "number": 1184,
12
+ "precision": 0.651501364877161,
13
+ "recall": 0.6047297297297297
14
+ },
15
+ "test_ORG": {
16
+ "f1": 0.8744594687349854,
17
+ "number": 14905,
18
+ "precision": 0.8951029298110026,
19
+ "recall": 0.8547467292854747
20
+ },
21
+ "test_PER": {
22
+ "f1": 0.9519624596522636,
23
+ "number": 18421,
24
+ "precision": 0.9513173587769707,
25
+ "recall": 0.952608436024103
26
+ },
27
+ "test_loss": 0.008724752813577652,
28
+ "test_overall_accuracy": 0.9835344213353552,
29
+ "test_overall_f1": 0.9181825779313034,
30
+ "test_overall_precision": 0.9217689611454993,
31
+ "test_overall_recall": 0.9146239940801036,
32
+ "test_runtime": 170.3172,
33
+ "test_samples_per_second": 305.401,
34
+ "test_steps_per_second": 9.547
35
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:337896969db39419d6b07882bdbd0ee41d1e2096728ccea6c6fca3b140d7cf93
3
+ size 17083583
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "250001": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "250002": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "250003": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": true,
63
+ "cls_token": "<s>",
64
+ "entity_max_length": 8,
65
+ "eos_token": "</s>",
66
+ "marker_max_length": 128,
67
+ "mask_token": "<mask>",
68
+ "model_max_length": 256,
69
+ "pad_token": "<pad>",
70
+ "sep_token": "</s>",
71
+ "tokenizer_class": "XLMRobertaTokenizer",
72
+ "unk_token": "<unk>"
73
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:648450ad2d0d6f7f3e7cc165dc44e9e24fa6c60104621005349ce92200d951c1
3
+ size 4984