tollefj/nordic-ner
Browse files- .gitattributes +1 -0
- README.md +209 -0
- added_tokens.json +4 -0
- all_results.json +35 -0
- config.json +138 -0
- model.safetensors +3 -0
- runs/Mar31_00-46-06_kontoret/events.out.tfevents.1711842441.kontoret.363807.0 +3 -0
- runs/Mar31_01-30-18_kontoret/events.out.tfevents.1711845134.kontoret.377829.0 +3 -0
- runs/Mar31_01-30-18_kontoret/events.out.tfevents.1711884700.kontoret.377829.1 +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- test_results.json +35 -0
- tokenizer.json +3 -0
- tokenizer_config.json +73 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: cc-by-sa-4.0
|
4 |
+
library_name: span-marker
|
5 |
+
tags:
|
6 |
+
- span-marker
|
7 |
+
- token-classification
|
8 |
+
- ner
|
9 |
+
- named-entity-recognition
|
10 |
+
- generated_from_span_marker_trainer
|
11 |
+
base_model: FacebookAI/xlm-roberta-base
|
12 |
+
datasets:
|
13 |
+
- norne
|
14 |
+
metrics:
|
15 |
+
- precision
|
16 |
+
- recall
|
17 |
+
- f1
|
18 |
+
widget:
|
19 |
+
- text: Av Boethius hand förelåg De institutione arithmetica (" Om aritmetikens grunder
|
20 |
+
") i två böcker.
|
21 |
+
- text: Hans hovedmotstander var lederen for opposisjonspartiet Movement for Democratic
|
22 |
+
Change, Morgan Tsvangirai.
|
23 |
+
- text: Roddarn blir proffs efter OS.
|
24 |
+
- text: Han blev dog diskvalificeret for at have trådt på banelinjen, og bronzemedaljen
|
25 |
+
gik i stedet til landsmanden Walter Dix.
|
26 |
+
- text: Stillingen var på dette tidspunkt 1-1, men Almunias redning banede vejen for
|
27 |
+
et sejrsmål af danske Nicklas Bendtner.
|
28 |
+
pipeline_tag: token-classification
|
29 |
+
model-index:
|
30 |
+
- name: SpanMarker with FacebookAI/xlm-roberta-base on norne
|
31 |
+
results:
|
32 |
+
- task:
|
33 |
+
type: token-classification
|
34 |
+
name: Named Entity Recognition
|
35 |
+
dataset:
|
36 |
+
name: norne
|
37 |
+
type: norne
|
38 |
+
split: test
|
39 |
+
metrics:
|
40 |
+
- type: f1
|
41 |
+
value: 0.9181825779313034
|
42 |
+
name: F1
|
43 |
+
- type: precision
|
44 |
+
value: 0.9217689611454993
|
45 |
+
name: Precision
|
46 |
+
- type: recall
|
47 |
+
value: 0.9146239940801036
|
48 |
+
name: Recall
|
49 |
+
---
|
50 |
+
|
51 |
+
# SpanMarker with FacebookAI/xlm-roberta-base on norne
|
52 |
+
|
53 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [norne](https://huggingface.co/datasets/norne) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) as the underlying encoder.
|
54 |
+
|
55 |
+
## Model Details
|
56 |
+
|
57 |
+
### Model Description
|
58 |
+
- **Model Type:** SpanMarker
|
59 |
+
- **Encoder:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
|
60 |
+
- **Maximum Sequence Length:** 256 tokens
|
61 |
+
- **Maximum Entity Length:** 8 words
|
62 |
+
- **Training Dataset:** [norne](https://huggingface.co/datasets/norne)
|
63 |
+
- **Language:** en
|
64 |
+
- **License:** cc-by-sa-4.0
|
65 |
+
|
66 |
+
### Model Sources
|
67 |
+
|
68 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
69 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
70 |
+
|
71 |
+
### Model Labels
|
72 |
+
| Label | Examples |
|
73 |
+
|:------|:-------------------------------------------------------------|
|
74 |
+
| LOC | "Gran", "Leicestershire", "Den tyske antarktisekspedisjonen" |
|
75 |
+
| MISC | "socialdemokratiske", "nationalist", "Living Legend" |
|
76 |
+
| ORG | "Stabæk", "Samlaget", "Marillion" |
|
77 |
+
| PER | "Fish", "Dmitrij Medvedev", "Guru Ardjan Dev" |
|
78 |
+
|
79 |
+
## Evaluation
|
80 |
+
|
81 |
+
### Metrics
|
82 |
+
| Label | Precision | Recall | F1 |
|
83 |
+
|:--------|:----------|:-------|:-------|
|
84 |
+
| **all** | 0.9218 | 0.9146 | 0.9182 |
|
85 |
+
| LOC | 0.9284 | 0.9433 | 0.9358 |
|
86 |
+
| MISC | 0.6515 | 0.6047 | 0.6272 |
|
87 |
+
| ORG | 0.8951 | 0.8547 | 0.8745 |
|
88 |
+
| PER | 0.9513 | 0.9526 | 0.9520 |
|
89 |
+
|
90 |
+
## Uses
|
91 |
+
|
92 |
+
### Direct Use for Inference
|
93 |
+
|
94 |
+
```python
|
95 |
+
from span_marker import SpanMarkerModel
|
96 |
+
|
97 |
+
# Download from the 🤗 Hub
|
98 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
99 |
+
# Run inference
|
100 |
+
entities = model.predict("Roddarn blir proffs efter OS.")
|
101 |
+
```
|
102 |
+
|
103 |
+
### Downstream Use
|
104 |
+
You can finetune this model on your own dataset.
|
105 |
+
|
106 |
+
<details><summary>Click to expand</summary>
|
107 |
+
|
108 |
+
```python
|
109 |
+
from span_marker import SpanMarkerModel, Trainer
|
110 |
+
|
111 |
+
# Download from the 🤗 Hub
|
112 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
113 |
+
|
114 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
115 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
116 |
+
|
117 |
+
# Initialize a Trainer using the pretrained model & dataset
|
118 |
+
trainer = Trainer(
|
119 |
+
model=model,
|
120 |
+
train_dataset=dataset["train"],
|
121 |
+
eval_dataset=dataset["validation"],
|
122 |
+
)
|
123 |
+
trainer.train()
|
124 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
125 |
+
```
|
126 |
+
</details>
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Out-of-Scope Use
|
130 |
+
|
131 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
## Bias, Risks and Limitations
|
136 |
+
|
137 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Recommendations
|
142 |
+
|
143 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
## Training Details
|
147 |
+
|
148 |
+
### Training Set Metrics
|
149 |
+
| Training set | Min | Median | Max |
|
150 |
+
|:----------------------|:----|:--------|:----|
|
151 |
+
| Sentence length | 1 | 12.8175 | 331 |
|
152 |
+
| Entities per sentence | 0 | 1.0055 | 54 |
|
153 |
+
|
154 |
+
### Training Hyperparameters
|
155 |
+
- learning_rate: 5e-05
|
156 |
+
- train_batch_size: 32
|
157 |
+
- eval_batch_size: 32
|
158 |
+
- seed: 42
|
159 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
160 |
+
- lr_scheduler_type: linear
|
161 |
+
- lr_scheduler_warmup_ratio: 0.1
|
162 |
+
- num_epochs: 3
|
163 |
+
|
164 |
+
### Training Results
|
165 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
166 |
+
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
167 |
+
| 0.5711 | 3000 | 0.0146 | 0.8650 | 0.8725 | 0.8687 | 0.9722 |
|
168 |
+
| 1.1422 | 6000 | 0.0123 | 0.8994 | 0.8920 | 0.8957 | 0.9778 |
|
169 |
+
| 1.7133 | 9000 | 0.0101 | 0.9184 | 0.8984 | 0.9083 | 0.9805 |
|
170 |
+
| 2.2844 | 12000 | 0.0101 | 0.9198 | 0.9110 | 0.9154 | 0.9818 |
|
171 |
+
| 2.8555 | 15000 | 0.0089 | 0.9245 | 0.9150 | 0.9197 | 0.9830 |
|
172 |
+
|
173 |
+
### Framework Versions
|
174 |
+
- Python: 3.12.2
|
175 |
+
- SpanMarker: 1.5.0
|
176 |
+
- Transformers: 4.38.2
|
177 |
+
- PyTorch: 2.2.1+cu121
|
178 |
+
- Datasets: 2.18.0
|
179 |
+
- Tokenizers: 0.15.2
|
180 |
+
|
181 |
+
## Citation
|
182 |
+
|
183 |
+
### BibTeX
|
184 |
+
```
|
185 |
+
@software{Aarsen_SpanMarker,
|
186 |
+
author = {Aarsen, Tom},
|
187 |
+
license = {Apache-2.0},
|
188 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
189 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
190 |
+
}
|
191 |
+
```
|
192 |
+
|
193 |
+
<!--
|
194 |
+
## Glossary
|
195 |
+
|
196 |
+
*Clearly define terms in order to be accessible across audiences.*
|
197 |
+
-->
|
198 |
+
|
199 |
+
<!--
|
200 |
+
## Model Card Authors
|
201 |
+
|
202 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
203 |
+
-->
|
204 |
+
|
205 |
+
<!--
|
206 |
+
## Model Card Contact
|
207 |
+
|
208 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
209 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 250003,
|
3 |
+
"<start>": 250002
|
4 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_LOC": {
|
4 |
+
"f1": 0.9357663122097303,
|
5 |
+
"number": 19545,
|
6 |
+
"precision": 0.9283915802195589,
|
7 |
+
"recall": 0.9432591455615247
|
8 |
+
},
|
9 |
+
"test_MISC": {
|
10 |
+
"f1": 0.62724485326325,
|
11 |
+
"number": 1184,
|
12 |
+
"precision": 0.651501364877161,
|
13 |
+
"recall": 0.6047297297297297
|
14 |
+
},
|
15 |
+
"test_ORG": {
|
16 |
+
"f1": 0.8744594687349854,
|
17 |
+
"number": 14905,
|
18 |
+
"precision": 0.8951029298110026,
|
19 |
+
"recall": 0.8547467292854747
|
20 |
+
},
|
21 |
+
"test_PER": {
|
22 |
+
"f1": 0.9519624596522636,
|
23 |
+
"number": 18421,
|
24 |
+
"precision": 0.9513173587769707,
|
25 |
+
"recall": 0.952608436024103
|
26 |
+
},
|
27 |
+
"test_loss": 0.008724752813577652,
|
28 |
+
"test_overall_accuracy": 0.9835344213353552,
|
29 |
+
"test_overall_f1": 0.9181825779313034,
|
30 |
+
"test_overall_precision": 0.9217689611454993,
|
31 |
+
"test_overall_recall": 0.9146239940801036,
|
32 |
+
"test_runtime": 170.3172,
|
33 |
+
"test_samples_per_second": 305.401,
|
34 |
+
"test_steps_per_second": 9.547
|
35 |
+
}
|
config.json
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "FacebookAI/xlm-roberta-base",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"XLMRobertaForMaskedLM"
|
10 |
+
],
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": 0,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"diversity_penalty": 0.0,
|
20 |
+
"do_sample": false,
|
21 |
+
"early_stopping": false,
|
22 |
+
"encoder_no_repeat_ngram_size": 0,
|
23 |
+
"eos_token_id": 2,
|
24 |
+
"exponential_decay_length_penalty": null,
|
25 |
+
"finetuning_task": null,
|
26 |
+
"forced_bos_token_id": null,
|
27 |
+
"forced_eos_token_id": null,
|
28 |
+
"hidden_act": "gelu",
|
29 |
+
"hidden_dropout_prob": 0.1,
|
30 |
+
"hidden_size": 768,
|
31 |
+
"id2label": {
|
32 |
+
"0": "O",
|
33 |
+
"1": "B-PER",
|
34 |
+
"2": "I-PER",
|
35 |
+
"3": "B-ORG",
|
36 |
+
"4": "I-ORG",
|
37 |
+
"5": "B-LOC",
|
38 |
+
"6": "I-LOC",
|
39 |
+
"7": "B-MISC",
|
40 |
+
"8": "I-MISC"
|
41 |
+
},
|
42 |
+
"initializer_range": 0.02,
|
43 |
+
"intermediate_size": 3072,
|
44 |
+
"is_decoder": false,
|
45 |
+
"is_encoder_decoder": false,
|
46 |
+
"label2id": {
|
47 |
+
"B-LOC": 5,
|
48 |
+
"B-MISC": 7,
|
49 |
+
"B-ORG": 3,
|
50 |
+
"B-PER": 1,
|
51 |
+
"I-LOC": 6,
|
52 |
+
"I-MISC": 8,
|
53 |
+
"I-ORG": 4,
|
54 |
+
"I-PER": 2,
|
55 |
+
"O": 0
|
56 |
+
},
|
57 |
+
"layer_norm_eps": 1e-05,
|
58 |
+
"length_penalty": 1.0,
|
59 |
+
"max_length": 20,
|
60 |
+
"max_position_embeddings": 514,
|
61 |
+
"min_length": 0,
|
62 |
+
"model_type": "xlm-roberta",
|
63 |
+
"no_repeat_ngram_size": 0,
|
64 |
+
"num_attention_heads": 12,
|
65 |
+
"num_beam_groups": 1,
|
66 |
+
"num_beams": 1,
|
67 |
+
"num_hidden_layers": 12,
|
68 |
+
"num_return_sequences": 1,
|
69 |
+
"output_attentions": false,
|
70 |
+
"output_hidden_states": false,
|
71 |
+
"output_past": true,
|
72 |
+
"output_scores": false,
|
73 |
+
"pad_token_id": 1,
|
74 |
+
"position_embedding_type": "absolute",
|
75 |
+
"prefix": null,
|
76 |
+
"problem_type": null,
|
77 |
+
"pruned_heads": {},
|
78 |
+
"remove_invalid_values": false,
|
79 |
+
"repetition_penalty": 1.0,
|
80 |
+
"return_dict": true,
|
81 |
+
"return_dict_in_generate": false,
|
82 |
+
"sep_token_id": null,
|
83 |
+
"suppress_tokens": null,
|
84 |
+
"task_specific_params": null,
|
85 |
+
"temperature": 1.0,
|
86 |
+
"tf_legacy_loss": false,
|
87 |
+
"tie_encoder_decoder": false,
|
88 |
+
"tie_word_embeddings": true,
|
89 |
+
"tokenizer_class": null,
|
90 |
+
"top_k": 50,
|
91 |
+
"top_p": 1.0,
|
92 |
+
"torch_dtype": null,
|
93 |
+
"torchscript": false,
|
94 |
+
"transformers_version": "4.38.2",
|
95 |
+
"type_vocab_size": 1,
|
96 |
+
"typical_p": 1.0,
|
97 |
+
"use_bfloat16": false,
|
98 |
+
"use_cache": true,
|
99 |
+
"vocab_size": 250008
|
100 |
+
},
|
101 |
+
"entity_max_length": 8,
|
102 |
+
"id2label": {
|
103 |
+
"0": "O",
|
104 |
+
"1": "LOC",
|
105 |
+
"2": "MISC",
|
106 |
+
"3": "ORG",
|
107 |
+
"4": "PER"
|
108 |
+
},
|
109 |
+
"id2reduced_id": {
|
110 |
+
"0": 0,
|
111 |
+
"1": 4,
|
112 |
+
"2": 4,
|
113 |
+
"3": 3,
|
114 |
+
"4": 3,
|
115 |
+
"5": 1,
|
116 |
+
"6": 1,
|
117 |
+
"7": 2,
|
118 |
+
"8": 2
|
119 |
+
},
|
120 |
+
"label2id": {
|
121 |
+
"LOC": 1,
|
122 |
+
"MISC": 2,
|
123 |
+
"O": 0,
|
124 |
+
"ORG": 3,
|
125 |
+
"PER": 4
|
126 |
+
},
|
127 |
+
"marker_max_length": 128,
|
128 |
+
"max_next_context": null,
|
129 |
+
"max_prev_context": null,
|
130 |
+
"model_max_length": 256,
|
131 |
+
"model_max_length_default": 512,
|
132 |
+
"model_type": "span-marker",
|
133 |
+
"span_marker_version": "1.5.0",
|
134 |
+
"torch_dtype": "float32",
|
135 |
+
"trained_with_document_context": false,
|
136 |
+
"transformers_version": "4.38.2",
|
137 |
+
"vocab_size": 250008
|
138 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ece745ad6003788541227e21d539b32aa94c3a91f7184730eb363bf41f5c612
|
3 |
+
size 1112248012
|
runs/Mar31_00-46-06_kontoret/events.out.tfevents.1711842441.kontoret.363807.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c0cdb385f065b2018a368fa5a5444fbd23c26a10a59cc06be643c1e61046844
|
3 |
+
size 20093
|
runs/Mar31_01-30-18_kontoret/events.out.tfevents.1711845134.kontoret.377829.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2034c6d5517d368f735e4dd2b625dfcb0703370dadcefe8db3918c0e19529e6a
|
3 |
+
size 76772
|
runs/Mar31_01-30-18_kontoret/events.out.tfevents.1711884700.kontoret.377829.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:692e689dc375d575de891ad5119561ee37a7ed29944b904e23164603383ea693
|
3 |
+
size 1096
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
test_results.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_LOC": {
|
4 |
+
"f1": 0.9357663122097303,
|
5 |
+
"number": 19545,
|
6 |
+
"precision": 0.9283915802195589,
|
7 |
+
"recall": 0.9432591455615247
|
8 |
+
},
|
9 |
+
"test_MISC": {
|
10 |
+
"f1": 0.62724485326325,
|
11 |
+
"number": 1184,
|
12 |
+
"precision": 0.651501364877161,
|
13 |
+
"recall": 0.6047297297297297
|
14 |
+
},
|
15 |
+
"test_ORG": {
|
16 |
+
"f1": 0.8744594687349854,
|
17 |
+
"number": 14905,
|
18 |
+
"precision": 0.8951029298110026,
|
19 |
+
"recall": 0.8547467292854747
|
20 |
+
},
|
21 |
+
"test_PER": {
|
22 |
+
"f1": 0.9519624596522636,
|
23 |
+
"number": 18421,
|
24 |
+
"precision": 0.9513173587769707,
|
25 |
+
"recall": 0.952608436024103
|
26 |
+
},
|
27 |
+
"test_loss": 0.008724752813577652,
|
28 |
+
"test_overall_accuracy": 0.9835344213353552,
|
29 |
+
"test_overall_f1": 0.9181825779313034,
|
30 |
+
"test_overall_precision": 0.9217689611454993,
|
31 |
+
"test_overall_recall": 0.9146239940801036,
|
32 |
+
"test_runtime": 170.3172,
|
33 |
+
"test_samples_per_second": 305.401,
|
34 |
+
"test_steps_per_second": 9.547
|
35 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:337896969db39419d6b07882bdbd0ee41d1e2096728ccea6c6fca3b140d7cf93
|
3 |
+
size 17083583
|
tokenizer_config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"250001": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"250002": {
|
45 |
+
"content": "<start>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"250003": {
|
53 |
+
"content": "<end>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"bos_token": "<s>",
|
62 |
+
"clean_up_tokenization_spaces": true,
|
63 |
+
"cls_token": "<s>",
|
64 |
+
"entity_max_length": 8,
|
65 |
+
"eos_token": "</s>",
|
66 |
+
"marker_max_length": 128,
|
67 |
+
"mask_token": "<mask>",
|
68 |
+
"model_max_length": 256,
|
69 |
+
"pad_token": "<pad>",
|
70 |
+
"sep_token": "</s>",
|
71 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
72 |
+
"unk_token": "<unk>"
|
73 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:648450ad2d0d6f7f3e7cc165dc44e9e24fa6c60104621005349ce92200d951c1
|
3 |
+
size 4984
|