|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import math |
|
import os |
|
import re |
|
import sys |
|
from functools import partial |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from bert_tokenizer import BasicTokenizer |
|
from easydict import EasyDict as edict |
|
from diffusers.utils.constants import HF_MODULES_CACHE |
|
from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3 |
|
from ocr_recog.RecModel import RecModel |
|
from PIL import Image, ImageDraw, ImageFont |
|
from safetensors.torch import load_file |
|
from skimage.transform._geometric import _umeyama as get_sym_mat |
|
from torch import nn |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
StableDiffusionLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor |
|
from diffusers.configuration_utils import register_to_config, ConfigMixin |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
checker = BasicTokenizer() |
|
|
|
|
|
PLACE_HOLDER = "*" |
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from pipeline_anytext import AnyTextPipeline |
|
>>> from anytext_controlnet import AnyTextControlNetModel |
|
>>> from diffusers import DDIMScheduler |
|
>>> from diffusers.utils import load_image |
|
>>> import torch |
|
|
|
>>> # load control net and stable diffusion v1-5 |
|
>>> text_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16, |
|
... variant="fp16",) |
|
>>> pipe = AnyTextPipeline.from_pretrained("tolgacangoz/anytext", controlnet=text_controlnet, |
|
... torch_dtype=torch.float16, variant="fp16", |
|
... ).to("cuda") |
|
|
|
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
>>> # uncomment following line if PyTorch>=2.0 is not installed for memory optimization |
|
>>> #pipe.enable_xformers_memory_efficient_attention() |
|
|
|
>>> # uncomment following line if you want to offload the model to CPU for memory optimization |
|
>>> # also remove the `.to("cuda")` part |
|
>>> #pipe.enable_model_cpu_offload() |
|
|
|
>>> # generate image |
|
>>> generator = torch.Generator("cpu").manual_seed(66273235) |
|
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream' |
|
>>> draw_pos = load_image("www.huggingface.co/a/AnyText/tree/main/examples/gen9.png") |
|
>>> image = pipe(prompt, num_inference_steps=20, generator=generator, mode="generate", |
|
... draw_pos=draw_pos, |
|
... ).images[0] |
|
>>> image |
|
``` |
|
""" |
|
|
|
|
|
def get_clip_token_for_string(tokenizer, string): |
|
batch_encoding = tokenizer( |
|
string, |
|
truncation=True, |
|
max_length=77, |
|
return_length=True, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
tokens = batch_encoding["input_ids"] |
|
assert ( |
|
torch.count_nonzero(tokens - 49407) == 2 |
|
), f"String '{string}' maps to more than a single token. Please use another string" |
|
return tokens[0, 1] |
|
|
|
|
|
def get_recog_emb(encoder, img_list): |
|
_img_list = [(img.repeat(1, 3, 1, 1) * 255)[0] for img in img_list] |
|
encoder.predictor.eval() |
|
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False) |
|
return preds_neck |
|
|
|
|
|
class EmbeddingManager(nn.Module): |
|
def __init__( |
|
self, |
|
embedder, |
|
placeholder_string="*", |
|
use_fp16=False, |
|
): |
|
super().__init__() |
|
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer) |
|
token_dim = 768 |
|
self.get_recog_emb = None |
|
self.token_dim = token_dim |
|
|
|
self.proj = nn.Linear(40 * 64, token_dim) |
|
|
|
if use_fp16: |
|
self.proj = self.proj.to(dtype=torch.float16) |
|
|
|
self.placeholder_token = get_token_for_string(placeholder_string) |
|
|
|
@torch.no_grad() |
|
def encode_text(self, text_info): |
|
if self.get_recog_emb is None: |
|
self.get_recog_emb = partial(get_recog_emb, self.recog) |
|
|
|
gline_list = [] |
|
for i in range(len(text_info["n_lines"])): |
|
n_lines = text_info["n_lines"][i] |
|
for j in range(n_lines): |
|
gline_list += [text_info["gly_line"][j][i : i + 1]] |
|
|
|
if len(gline_list) > 0: |
|
recog_emb = self.get_recog_emb(gline_list) |
|
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1).to(self.proj.weight.dtype)) |
|
|
|
self.text_embs_all = [] |
|
n_idx = 0 |
|
for i in range(len(text_info["n_lines"])): |
|
n_lines = text_info["n_lines"][i] |
|
text_embs = [] |
|
for j in range(n_lines): |
|
text_embs += [enc_glyph[n_idx : n_idx + 1]] |
|
n_idx += 1 |
|
self.text_embs_all += [text_embs] |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
tokenized_text, |
|
embedded_text, |
|
): |
|
b, device = tokenized_text.shape[0], tokenized_text.device |
|
for i in range(b): |
|
idx = tokenized_text[i] == self.placeholder_token.to(device) |
|
if sum(idx) > 0: |
|
if i >= len(self.text_embs_all): |
|
print("truncation for log images...") |
|
break |
|
text_emb = torch.cat(self.text_embs_all[i], dim=0) |
|
if sum(idx) != len(text_emb): |
|
print("truncation for long caption...") |
|
text_emb = text_emb.to(embedded_text.device) |
|
embedded_text[i][idx] = text_emb[: sum(idx)] |
|
return embedded_text |
|
|
|
def embedding_parameters(self): |
|
return self.parameters() |
|
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) |
|
|
|
|
|
def min_bounding_rect(img): |
|
ret, thresh = cv2.threshold(img, 127, 255, 0) |
|
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
if len(contours) == 0: |
|
print("Bad contours, using fake bbox...") |
|
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]]) |
|
max_contour = max(contours, key=cv2.contourArea) |
|
rect = cv2.minAreaRect(max_contour) |
|
box = cv2.boxPoints(rect) |
|
box = np.int0(box) |
|
|
|
x_sorted = sorted(box, key=lambda x: x[0]) |
|
left = x_sorted[:2] |
|
right = x_sorted[2:] |
|
left = sorted(left, key=lambda x: x[1]) |
|
(tl, bl) = left |
|
right = sorted(right, key=lambda x: x[1]) |
|
(tr, br) = right |
|
if tl[1] > bl[1]: |
|
(tl, bl) = (bl, tl) |
|
if tr[1] > br[1]: |
|
(tr, br) = (br, tr) |
|
return np.array([tl, tr, br, bl]) |
|
|
|
|
|
def adjust_image(box, img): |
|
pts1 = np.float32([box[0], box[1], box[2], box[3]]) |
|
width = max(np.linalg.norm(pts1[0] - pts1[1]), np.linalg.norm(pts1[2] - pts1[3])) |
|
height = max(np.linalg.norm(pts1[0] - pts1[3]), np.linalg.norm(pts1[1] - pts1[2])) |
|
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]]) |
|
|
|
M = get_sym_mat(pts1, pts2, estimate_scale=True) |
|
C, H, W = img.shape |
|
T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]]) |
|
theta = np.linalg.inv(T @ M @ np.linalg.inv(T)) |
|
theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device) |
|
grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True) |
|
result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True) |
|
result = torch.clamp(result.squeeze(0), 0, 255) |
|
|
|
result = result[:, : int(height), : int(width)] |
|
return result |
|
|
|
|
|
""" |
|
mask: numpy.ndarray, mask of textual, HWC |
|
src_img: torch.Tensor, source image, CHW |
|
""" |
|
|
|
|
|
def crop_image(src_img, mask): |
|
box = min_bounding_rect(mask) |
|
result = adjust_image(box, src_img) |
|
if len(result.shape) == 2: |
|
result = torch.stack([result] * 3, axis=-1) |
|
return result |
|
|
|
|
|
def create_predictor(model_dir=None, model_lang="ch", device="cpu", use_fp16=False): |
|
if model_dir is None or not os.path.exists(model_dir): |
|
model_dir = hf_hub_download( |
|
repo_id="tolgacangoz/anytext", |
|
filename="text_embedding_module/OCR/ppv3_rec.pth", |
|
cache_dir=HF_MODULES_CACHE |
|
) |
|
if not os.path.exists(model_dir): |
|
raise ValueError("not find model file path {}".format(model_dir)) |
|
|
|
if model_lang == "ch": |
|
n_class = 6625 |
|
elif model_lang == "en": |
|
n_class = 97 |
|
else: |
|
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}") |
|
rec_config = edict( |
|
in_channels=3, |
|
backbone=edict(type="MobileNetV1Enhance", scale=0.5, last_conv_stride=[1, 2], last_pool_type="avg"), |
|
neck=edict(type="SequenceEncoder", encoder_type="svtr", dims=64, depth=2, hidden_dims=120, use_guide=True), |
|
head=edict(type="CTCHead", fc_decay=0.00001, out_channels=n_class, return_feats=True), |
|
) |
|
|
|
rec_model = RecModel(rec_config) |
|
state_dict = torch.load(model_dir, map_location=device) |
|
rec_model.load_state_dict(state_dict) |
|
return rec_model |
|
|
|
|
|
def _check_image_file(path): |
|
img_end = ("tiff", "tif", "bmp", "rgb", "jpg", "png", "jpeg") |
|
return path.lower().endswith(tuple(img_end)) |
|
|
|
|
|
def get_image_file_list(img_file): |
|
imgs_lists = [] |
|
if img_file is None or not os.path.exists(img_file): |
|
raise Exception("not found any img file in {}".format(img_file)) |
|
if os.path.isfile(img_file) and _check_image_file(img_file): |
|
imgs_lists.append(img_file) |
|
elif os.path.isdir(img_file): |
|
for single_file in os.listdir(img_file): |
|
file_path = os.path.join(img_file, single_file) |
|
if os.path.isfile(file_path) and _check_image_file(file_path): |
|
imgs_lists.append(file_path) |
|
if len(imgs_lists) == 0: |
|
raise Exception("not found any img file in {}".format(img_file)) |
|
imgs_lists = sorted(imgs_lists) |
|
return imgs_lists |
|
|
|
|
|
class TextRecognizer(object): |
|
def __init__(self, args, predictor): |
|
self.rec_image_shape = [int(v) for v in args["rec_image_shape"].split(",")] |
|
self.rec_batch_num = args["rec_batch_num"] |
|
self.predictor = predictor |
|
self.chars = self.get_char_dict(args["rec_char_dict_path"]) |
|
self.char2id = {x: i for i, x in enumerate(self.chars)} |
|
self.is_onnx = not isinstance(self.predictor, torch.nn.Module) |
|
self.use_fp16 = args["use_fp16"] |
|
|
|
|
|
def resize_norm_img(self, img, max_wh_ratio): |
|
imgC, imgH, imgW = self.rec_image_shape |
|
assert imgC == img.shape[0] |
|
imgW = int((imgH * max_wh_ratio)) |
|
|
|
h, w = img.shape[1:] |
|
ratio = w / float(h) |
|
if math.ceil(imgH * ratio) > imgW: |
|
resized_w = imgW |
|
else: |
|
resized_w = int(math.ceil(imgH * ratio)) |
|
resized_image = torch.nn.functional.interpolate( |
|
img.unsqueeze(0), |
|
size=(imgH, resized_w), |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
resized_image /= 255.0 |
|
resized_image -= 0.5 |
|
resized_image /= 0.5 |
|
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device) |
|
padding_im[:, :, 0:resized_w] = resized_image[0] |
|
return padding_im |
|
|
|
|
|
def pred_imglist(self, img_list, show_debug=False): |
|
img_num = len(img_list) |
|
assert img_num > 0 |
|
|
|
width_list = [] |
|
for img in img_list: |
|
width_list.append(img.shape[2] / float(img.shape[1])) |
|
|
|
indices = torch.from_numpy(np.argsort(np.array(width_list))) |
|
batch_num = self.rec_batch_num |
|
preds_all = [None] * img_num |
|
preds_neck_all = [None] * img_num |
|
for beg_img_no in range(0, img_num, batch_num): |
|
end_img_no = min(img_num, beg_img_no + batch_num) |
|
norm_img_batch = [] |
|
|
|
imgC, imgH, imgW = self.rec_image_shape[:3] |
|
max_wh_ratio = imgW / imgH |
|
for ino in range(beg_img_no, end_img_no): |
|
h, w = img_list[indices[ino]].shape[1:] |
|
if h > w * 1.2: |
|
img = img_list[indices[ino]] |
|
img = torch.transpose(img, 1, 2).flip(dims=[1]) |
|
img_list[indices[ino]] = img |
|
h, w = img.shape[1:] |
|
|
|
|
|
for ino in range(beg_img_no, end_img_no): |
|
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) |
|
if self.use_fp16: |
|
norm_img = norm_img.half() |
|
norm_img = norm_img.unsqueeze(0) |
|
norm_img_batch.append(norm_img) |
|
norm_img_batch = torch.cat(norm_img_batch, dim=0) |
|
if show_debug: |
|
for i in range(len(norm_img_batch)): |
|
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy() |
|
_img = (_img + 0.5) * 255 |
|
_img = _img[:, :, ::-1] |
|
file_name = f"{indices[beg_img_no + i]}" |
|
if os.path.exists(file_name + ".jpg"): |
|
file_name += "_2" |
|
cv2.imwrite(file_name + ".jpg", _img) |
|
if self.is_onnx: |
|
input_dict = {} |
|
input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy() |
|
outputs = self.predictor.run(None, input_dict) |
|
preds = {} |
|
preds["ctc"] = torch.from_numpy(outputs[0]) |
|
preds["ctc_neck"] = [torch.zeros(1)] * img_num |
|
else: |
|
preds = self.predictor(norm_img_batch) |
|
for rno in range(preds["ctc"].shape[0]): |
|
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno] |
|
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno] |
|
|
|
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0) |
|
|
|
def get_char_dict(self, character_dict_path): |
|
character_str = [] |
|
with open(character_dict_path, "rb") as fin: |
|
lines = fin.readlines() |
|
for line in lines: |
|
line = line.decode("utf-8").strip("\n").strip("\r\n") |
|
character_str.append(line) |
|
dict_character = list(character_str) |
|
dict_character = ["sos"] + dict_character + [" "] |
|
return dict_character |
|
|
|
def get_text(self, order): |
|
char_list = [self.chars[text_id] for text_id in order] |
|
return "".join(char_list) |
|
|
|
def decode(self, mat): |
|
text_index = mat.detach().cpu().numpy().argmax(axis=1) |
|
ignored_tokens = [0] |
|
selection = np.ones(len(text_index), dtype=bool) |
|
selection[1:] = text_index[1:] != text_index[:-1] |
|
for ignored_token in ignored_tokens: |
|
selection &= text_index != ignored_token |
|
return text_index[selection], np.where(selection)[0] |
|
|
|
def get_ctcloss(self, preds, gt_text, weight): |
|
if not isinstance(weight, torch.Tensor): |
|
weight = torch.tensor(weight).to(preds.device) |
|
ctc_loss = torch.nn.CTCLoss(reduction="none") |
|
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) |
|
targets = [] |
|
target_lengths = [] |
|
for t in gt_text: |
|
targets += [self.char2id.get(i, len(self.chars) - 1) for i in t] |
|
target_lengths += [len(t)] |
|
targets = torch.tensor(targets).to(preds.device) |
|
target_lengths = torch.tensor(target_lengths).to(preds.device) |
|
input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(preds.device) |
|
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths) |
|
loss = loss / input_lengths * weight |
|
return loss |
|
|
|
|
|
class TextEmbeddingModule(nn.Module): |
|
|
|
def __init__(self, font_path, use_fp16=False, device="cpu"): |
|
super().__init__() |
|
|
|
self.font = ImageFont.truetype(font_path, 60) |
|
self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16) |
|
self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16) |
|
rec_model_dir = "./text_embedding_module/OCR/ppv3_rec.pth" |
|
self.text_predictor = create_predictor(rec_model_dir, device=device, use_fp16=use_fp16).eval() |
|
args = {} |
|
args["rec_image_shape"] = "3, 48, 320" |
|
args["rec_batch_num"] = 6 |
|
args["rec_char_dict_path"] = "./text_embedding_module/OCR/ppocr_keys_v1.txt" |
|
args["rec_char_dict_path"] = hf_hub_download( |
|
repo_id="tolgacangoz/anytext", |
|
filename="text_embedding_module/OCR/ppocr_keys_v1.txt", |
|
cache_dir=HF_MODULES_CACHE |
|
) |
|
args["use_fp16"] = use_fp16 |
|
self.embedding_manager.recog = TextRecognizer(args, self.text_predictor) |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
prompt, |
|
texts, |
|
negative_prompt, |
|
num_images_per_prompt, |
|
mode, |
|
draw_pos, |
|
sort_priority="↕", |
|
max_chars=77, |
|
revise_pos=False, |
|
h=512, |
|
w=512, |
|
): |
|
if prompt is None and texts is None: |
|
raise ValueError("Prompt or texts must be provided!") |
|
|
|
if draw_pos is None: |
|
pos_imgs = np.zeros((w, h, 1)) |
|
if isinstance(draw_pos, str): |
|
draw_pos = cv2.imread(draw_pos)[..., ::-1] |
|
if draw_pos is None: |
|
raise ValueError(f"Can't read draw_pos image from {draw_pos}!") |
|
pos_imgs = 255 - draw_pos |
|
elif isinstance(draw_pos, torch.Tensor): |
|
pos_imgs = draw_pos.cpu().numpy() |
|
else: |
|
if not isinstance(draw_pos, np.ndarray): |
|
raise ValueError(f"Unknown format of draw_pos: {type(draw_pos)}") |
|
if mode == "edit": |
|
pos_imgs = cv2.resize(pos_imgs, (w, h)) |
|
pos_imgs = pos_imgs[..., 0:1] |
|
pos_imgs = cv2.convertScaleAbs(pos_imgs) |
|
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY) |
|
|
|
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority) |
|
if len(pos_imgs) == 0: |
|
pos_imgs = [np.zeros((h, w, 1))] |
|
n_lines = len(texts) |
|
if len(pos_imgs) < n_lines: |
|
if n_lines == 1 and texts[0] == " ": |
|
pass |
|
else: |
|
raise ValueError( |
|
f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!" |
|
) |
|
elif len(pos_imgs) > n_lines: |
|
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt." |
|
logger.warning(str_warning) |
|
|
|
pre_pos = [] |
|
poly_list = [] |
|
for input_pos in pos_imgs: |
|
if input_pos.mean() != 0: |
|
input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos |
|
poly, pos_img = self.find_polygon(input_pos) |
|
pre_pos += [pos_img / 255.0] |
|
poly_list += [poly] |
|
else: |
|
pre_pos += [np.zeros((h, w, 1))] |
|
poly_list += [None] |
|
np_hint = np.sum(pre_pos, axis=0).clip(0, 1) |
|
|
|
text_info = {} |
|
text_info["glyphs"] = [] |
|
text_info["gly_line"] = [] |
|
text_info["positions"] = [] |
|
text_info["n_lines"] = [len(texts)] * num_images_per_prompt |
|
for i in range(len(texts)): |
|
text = texts[i] |
|
if len(text) > max_chars: |
|
str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...' |
|
logger.warning(str_warning) |
|
text = text[:max_chars] |
|
gly_scale = 2 |
|
if pre_pos[i].mean() != 0: |
|
gly_line = self.draw_glyph(self.font, text) |
|
glyphs = self.draw_glyph2( |
|
self.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False |
|
) |
|
if revise_pos: |
|
resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])) |
|
new_pos = cv2.morphologyEx( |
|
(resize_gly * 255).astype(np.uint8), |
|
cv2.MORPH_CLOSE, |
|
kernel=np.ones((resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), dtype=np.uint8), |
|
iterations=1, |
|
) |
|
new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos |
|
contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) |
|
if len(contours) != 1: |
|
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..." |
|
logger.warning(str_warning) |
|
else: |
|
rect = cv2.minAreaRect(contours[0]) |
|
poly = np.int0(cv2.boxPoints(rect)) |
|
pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0 |
|
else: |
|
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1)) |
|
gly_line = np.zeros((80, 512, 1)) |
|
pos = pre_pos[i] |
|
text_info["glyphs"] += [self.arr2tensor(glyphs, num_images_per_prompt)] |
|
text_info["gly_line"] += [self.arr2tensor(gly_line, num_images_per_prompt)] |
|
text_info["positions"] += [self.arr2tensor(pos, num_images_per_prompt)] |
|
|
|
|
|
|
|
self.embedding_manager.encode_text(text_info) |
|
prompt_embeds = self.frozen_CLIP_embedder_t3.encode([prompt], embedding_manager=self.embedding_manager) |
|
|
|
self.embedding_manager.encode_text(text_info) |
|
negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode( |
|
[negative_prompt], embedding_manager=self.embedding_manager |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, text_info, np_hint |
|
|
|
def arr2tensor(self, arr, bs): |
|
arr = np.transpose(arr, (2, 0, 1)) |
|
_arr = torch.from_numpy(arr.copy()).float().cpu() |
|
if self.use_fp16: |
|
_arr = _arr.half() |
|
_arr = torch.stack([_arr for _ in range(bs)], dim=0) |
|
return _arr |
|
|
|
def separate_pos_imgs(self, img, sort_priority, gap=102): |
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img) |
|
components = [] |
|
for label in range(1, num_labels): |
|
component = np.zeros_like(img) |
|
component[labels == label] = 255 |
|
components.append((component, centroids[label])) |
|
if sort_priority == "↕": |
|
fir, sec = 1, 0 |
|
elif sort_priority == "↔": |
|
fir, sec = 0, 1 |
|
else: |
|
raise ValueError(f"Unknown sort_priority: {sort_priority}") |
|
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap)) |
|
sorted_components = [c[0] for c in components] |
|
return sorted_components |
|
|
|
def find_polygon(self, image, min_rect=False): |
|
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) |
|
max_contour = max(contours, key=cv2.contourArea) |
|
if min_rect: |
|
|
|
rect = cv2.minAreaRect(max_contour) |
|
poly = np.int0(cv2.boxPoints(rect)) |
|
else: |
|
|
|
epsilon = 0.01 * cv2.arcLength(max_contour, True) |
|
poly = cv2.approxPolyDP(max_contour, epsilon, True) |
|
n, _, xy = poly.shape |
|
poly = poly.reshape(n, xy) |
|
cv2.drawContours(image, [poly], -1, 255, -1) |
|
return poly, image |
|
|
|
def draw_glyph(self, font, text): |
|
g_size = 50 |
|
W, H = (512, 80) |
|
new_font = font.font_variant(size=g_size) |
|
img = Image.new(mode="1", size=(W, H), color=0) |
|
draw = ImageDraw.Draw(img) |
|
left, top, right, bottom = new_font.getbbox(text) |
|
text_width = max(right - left, 5) |
|
text_height = max(bottom - top, 5) |
|
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height) |
|
new_font = font.font_variant(size=int(g_size * ratio)) |
|
|
|
text_width, text_height = new_font.getsize(text) |
|
offset_x, offset_y = new_font.getoffset(text) |
|
x = (img.width - text_width) // 2 |
|
y = (img.height - text_height) // 2 - offset_y // 2 |
|
draw.text((x, y), text, font=new_font, fill="white") |
|
img = np.expand_dims(np.array(img), axis=2).astype(np.float64) |
|
return img |
|
|
|
def draw_glyph2(self, font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True): |
|
enlarge_polygon = polygon * scale |
|
rect = cv2.minAreaRect(enlarge_polygon) |
|
box = cv2.boxPoints(rect) |
|
box = np.int0(box) |
|
w, h = rect[1] |
|
angle = rect[2] |
|
if angle < -45: |
|
angle += 90 |
|
angle = -angle |
|
if w < h: |
|
angle += 90 |
|
|
|
vert = False |
|
if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng: |
|
_w = max(box[:, 0]) - min(box[:, 0]) |
|
_h = max(box[:, 1]) - min(box[:, 1]) |
|
if _h >= _w: |
|
vert = True |
|
angle = 0 |
|
|
|
img = np.zeros((height * scale, width * scale, 3), np.uint8) |
|
img = Image.fromarray(img) |
|
|
|
|
|
image4ratio = Image.new("RGB", img.size, "white") |
|
draw = ImageDraw.Draw(image4ratio) |
|
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font) |
|
text_w = min(w, h) * (_tw / _th) |
|
if text_w <= max(w, h): |
|
|
|
if len(text) > 1 and not vert and add_space: |
|
for i in range(1, 100): |
|
text_space = self.insert_spaces(text, i) |
|
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font) |
|
if min(w, h) * (_tw2 / _th2) > max(w, h): |
|
break |
|
text = self.insert_spaces(text, i - 1) |
|
font_size = min(w, h) * 0.80 |
|
else: |
|
shrink = 0.75 if vert else 0.85 |
|
font_size = min(w, h) / (text_w / max(w, h)) * shrink |
|
new_font = font.font_variant(size=int(font_size)) |
|
|
|
left, top, right, bottom = new_font.getbbox(text) |
|
text_width = right - left |
|
text_height = bottom - top |
|
|
|
layer = Image.new("RGBA", img.size, (0, 0, 0, 0)) |
|
draw = ImageDraw.Draw(layer) |
|
if not vert: |
|
draw.text( |
|
(rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top), |
|
text, |
|
font=new_font, |
|
fill=(255, 255, 255, 255), |
|
) |
|
else: |
|
x_s = min(box[:, 0]) + _w // 2 - text_height // 2 |
|
y_s = min(box[:, 1]) |
|
for c in text: |
|
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255)) |
|
_, _t, _, _b = new_font.getbbox(c) |
|
y_s += _b |
|
|
|
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1])) |
|
|
|
x_offset = int((img.width - rotated_layer.width) / 2) |
|
y_offset = int((img.height - rotated_layer.height) / 2) |
|
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer) |
|
img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64) |
|
return img |
|
|
|
def insert_spaces(self, string, nSpace): |
|
if nSpace == 0: |
|
return string |
|
new_string = "" |
|
for char in string: |
|
new_string += char + " " * nSpace |
|
return new_string[:-nSpace] |
|
|
|
def to(self, *args, **kwargs): |
|
self.frozen_CLIP_embedder_t3 = self.frozen_CLIP_embedder_t3.to(*args, **kwargs) |
|
self.embedding_manager = self.embedding_manager.to(*args, **kwargs) |
|
self.text_predictor = self.text_predictor.to(*args, **kwargs) |
|
self.device = self.frozen_CLIP_embedder_t3.device |
|
return self |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
class AuxiliaryLatentModule(nn.Module): |
|
def __init__( |
|
self, |
|
font_path, |
|
vae=None, |
|
device="cpu", |
|
use_fp16=False, |
|
): |
|
super().__init__() |
|
self.font = ImageFont.truetype(font_path, 60) |
|
self.use_fp16 = use_fp16 |
|
self.device = device |
|
|
|
self.vae = vae.eval() if vae is not None else None |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
text_info, |
|
mode, |
|
draw_pos, |
|
ori_image, |
|
num_images_per_prompt, |
|
np_hint, |
|
h=512, |
|
w=512, |
|
): |
|
if mode == "generate": |
|
edit_image = np.ones((h, w, 3)) * 127.5 |
|
elif mode == "edit": |
|
if draw_pos is None or ori_image is None: |
|
raise ValueError("Reference image and position image are needed for text editing!") |
|
if isinstance(ori_image, str): |
|
ori_image = cv2.imread(ori_image)[..., ::-1] |
|
if ori_image is None: |
|
raise ValueError(f"Can't read ori_image image from {ori_image}!") |
|
elif isinstance(ori_image, torch.Tensor): |
|
ori_image = ori_image.cpu().numpy() |
|
else: |
|
if not isinstance(ori_image, np.ndarray): |
|
raise ValueError(f"Unknown format of ori_image: {type(ori_image)}") |
|
edit_image = ori_image.clip(1, 255) |
|
edit_image = self.check_channels(edit_image) |
|
edit_image = self.resize_image( |
|
edit_image, max_length=768 |
|
) |
|
|
|
|
|
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint) |
|
masked_img = np.transpose(masked_img, (2, 0, 1)) |
|
masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device) |
|
if self.use_fp16: |
|
masked_img = masked_img.half() |
|
masked_x = (retrieve_latents(self.vae.encode(masked_img[None, ...])) * self.vae.config.scaling_factor).detach() |
|
if self.use_fp16: |
|
masked_x = masked_x.half() |
|
text_info["masked_x"] = torch.cat([masked_x for _ in range(num_images_per_prompt)], dim=0) |
|
|
|
glyphs = torch.cat(text_info["glyphs"], dim=1).sum(dim=1, keepdim=True) |
|
positions = torch.cat(text_info["positions"], dim=1).sum(dim=1, keepdim=True) |
|
|
|
return glyphs, positions, text_info |
|
|
|
def check_channels(self, image): |
|
channels = image.shape[2] if len(image.shape) == 3 else 1 |
|
if channels == 1: |
|
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) |
|
elif channels > 3: |
|
image = image[:, :, :3] |
|
return image |
|
|
|
def resize_image(self, img, max_length=768): |
|
height, width = img.shape[:2] |
|
max_dimension = max(height, width) |
|
|
|
if max_dimension > max_length: |
|
scale_factor = max_length / max_dimension |
|
new_width = int(round(width * scale_factor)) |
|
new_height = int(round(height * scale_factor)) |
|
new_size = (new_width, new_height) |
|
img = cv2.resize(img, new_size) |
|
height, width = img.shape[:2] |
|
img = cv2.resize(img, (width - (width % 64), height - (height % 64))) |
|
return img |
|
|
|
def insert_spaces(self, string, nSpace): |
|
if nSpace == 0: |
|
return string |
|
new_string = "" |
|
for char in string: |
|
new_string += char + " " * nSpace |
|
return new_string[:-nSpace] |
|
|
|
def to(self, device): |
|
self.device = device |
|
self.vae = self.vae.to(device) |
|
return self |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class AnyTextPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
TextualInversionLoaderMixin, |
|
StableDiffusionLoraLoaderMixin, |
|
IPAdapterMixin, |
|
FromSingleFileMixin, |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): |
|
Provides additional conditioning to the `unet` during the denoising process. If you set multiple |
|
ControlNets as a list, the outputs from each ControlNet are added together to create one combined |
|
additional conditioning. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" |
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
font_path: str, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
text_embedding_module: TextEmbeddingModule = None, |
|
auxiliary_latent_module: AuxiliaryLatentModule = None, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
self.text_embedding_module = TextEmbeddingModule( |
|
use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path |
|
) |
|
self.auxiliary_latent_module = AuxiliaryLatentModule( |
|
vae=vae, use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path |
|
) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
if isinstance(controlnet, (list, tuple)): |
|
controlnet = MultiControlNetModel(controlnet) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
text_embedding_module=self.text_embedding_module, |
|
auxiliary_latent_module=self.auxiliary_latent_module, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker, font_path=font_path) |
|
|
|
def modify_prompt(self, prompt): |
|
prompt = prompt.replace("“", '"') |
|
prompt = prompt.replace("”", '"') |
|
p = '"(.*?)"' |
|
strs = re.findall(p, prompt) |
|
if len(strs) == 0: |
|
strs = [" "] |
|
else: |
|
for s in strs: |
|
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1) |
|
if self.is_chinese(prompt): |
|
if self.trans_pipe is None: |
|
return None, None |
|
old_prompt = prompt |
|
prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1] |
|
print(f"Translate: {old_prompt} --> {prompt}") |
|
return prompt, strs |
|
|
|
def is_chinese(self, text): |
|
text = checker._clean_text(text) |
|
for char in text: |
|
cp = ord(char) |
|
if checker._is_chinese_char(cp): |
|
return True |
|
return False |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
): |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
): |
|
image_embeds = [] |
|
if do_classifier_free_guidance: |
|
negative_image_embeds = [] |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
|
|
image_embeds.append(single_image_embeds[None, :]) |
|
if do_classifier_free_guidance: |
|
negative_image_embeds.append(single_negative_image_embeds[None, :]) |
|
else: |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
negative_image_embeds.append(single_negative_image_embeds) |
|
image_embeds.append(single_image_embeds) |
|
|
|
ip_adapter_image_embeds = [] |
|
for i, single_image_embeds in enumerate(image_embeds): |
|
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) |
|
|
|
single_image_embeds = single_image_embeds.to(device=device) |
|
ip_adapter_image_embeds.append(single_image_embeds) |
|
|
|
return ip_adapter_image_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
|
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
ip_adapter_image=None, |
|
ip_adapter_image_embeds=None, |
|
controlnet_conditioning_scale=1.0, |
|
control_guidance_start=0.0, |
|
control_guidance_end=1.0, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule |
|
) |
|
|
|
|
|
if ( |
|
isinstance(self.controlnet, ControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, ControlNetModel) |
|
): |
|
if not isinstance(controlnet_conditioning_scale, float): |
|
print(controlnet_conditioning_scale) |
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") |
|
elif ( |
|
isinstance(self.controlnet, MultiControlNetModel) |
|
or is_compiled |
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) |
|
): |
|
if isinstance(controlnet_conditioning_scale, list): |
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale): |
|
raise ValueError( |
|
"A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. " |
|
"The conditioning scale must be fixed across the batch." |
|
) |
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( |
|
self.controlnet.nets |
|
): |
|
raise ValueError( |
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" |
|
" the same length as the number of controlnets" |
|
) |
|
else: |
|
assert False |
|
|
|
if not isinstance(control_guidance_start, (tuple, list)): |
|
control_guidance_start = [control_guidance_start] |
|
|
|
if not isinstance(control_guidance_end, (tuple, list)): |
|
control_guidance_end = [control_guidance_end] |
|
|
|
if len(control_guidance_start) != len(control_guidance_end): |
|
raise ValueError( |
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." |
|
) |
|
|
|
if isinstance(self.controlnet, MultiControlNetModel): |
|
if len(control_guidance_start) != len(self.controlnet.nets): |
|
raise ValueError( |
|
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." |
|
) |
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end): |
|
if start >= end: |
|
raise ValueError( |
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." |
|
) |
|
if start < 0.0: |
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") |
|
if end > 1.0: |
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
if ip_adapter_image_embeds is not None: |
|
if not isinstance(ip_adapter_image_embeds, list): |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
) |
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
) |
|
|
|
def check_image(self, image, prompt, prompt_embeds): |
|
image_is_pil = isinstance(image, PIL.Image.Image) |
|
image_is_tensor = isinstance(image, torch.Tensor) |
|
image_is_np = isinstance(image, np.ndarray) |
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) |
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) |
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) |
|
|
|
if ( |
|
not image_is_pil |
|
and not image_is_tensor |
|
and not image_is_np |
|
and not image_is_pil_list |
|
and not image_is_tensor_list |
|
and not image_is_np_list |
|
): |
|
raise TypeError( |
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" |
|
) |
|
|
|
if image_is_pil: |
|
image_batch_size = 1 |
|
else: |
|
image_batch_size = len(image) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
prompt_batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
prompt_batch_size = len(prompt) |
|
elif prompt_embeds is not None: |
|
prompt_batch_size = prompt_embeds.shape[0] |
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size: |
|
raise ValueError( |
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
) |
|
|
|
def prepare_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def get_guidance_scale_embedding( |
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 |
|
) -> torch.Tensor: |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
w (`torch.Tensor`): |
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
Dimension of the embeddings to generate. |
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): |
|
Data type of the generated embeddings. |
|
|
|
Returns: |
|
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
mode: Optional[str] = "generate", |
|
draw_pos: Optional[Union[str, torch.Tensor]] = None, |
|
ori_image: Optional[Union[str, torch.Tensor]] = None, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted |
|
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or |
|
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, |
|
images must be passed as a list such that each element of the list can be correctly batched for input |
|
to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single |
|
ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple |
|
ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all |
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): |
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of |
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: |
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a |
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
|
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
prompt, texts = self.modify_prompt(prompt) |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module( |
|
prompt, |
|
texts, |
|
negative_prompt, |
|
num_images_per_prompt, |
|
mode, |
|
draw_pos, |
|
) |
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
guided_hint = self.auxiliary_latent_module( |
|
text_info=text_info, |
|
mode=mode, |
|
draw_pos=draw_pos, |
|
ori_image=ori_image, |
|
num_images_per_prompt=num_images_per_prompt, |
|
np_hint=np_hint, |
|
) |
|
height, width = 512, 512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
assert False |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas |
|
) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = ( |
|
{"image_embeds": image_embeds} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None |
|
else None |
|
) |
|
|
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
is_unet_compiled = is_compiled_module(self.unet) |
|
is_controlnet_compiled = is_compiled_module(self.controlnet) |
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: |
|
torch._inductor.cudagraph_mark_step_begin() |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
|
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
guided_hint=guided_hint, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.unet.to("cpu") |
|
self.controlnet.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ |
|
0 |
|
] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|