Togu LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 232.03 +/- 54.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e55387a36d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e55387a3760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e55387a37f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e55387a3880>", "_build": "<function ActorCriticPolicy._build at 0x7e55387a3910>", "forward": "<function ActorCriticPolicy.forward at 0x7e55387a39a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e55387a3a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e55387a3ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e55387a3b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e55387a3be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e55387a3c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e55387a3d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e5538942800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710071581767340442, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNJHz3D8Xy6P5oNuTeCL7SRKi25E44kOAAAgD8AAIA/zZUmvj0UGbsq6YE8M5/hO4LegTy2rdG8AACAPwAAgD+yP6m+cheOP4Xo6L7cPfu+xT+XvuFNITwAAAAAAAAAABP6Or5oFbW8aIP+OEabtzfTpB4+g3g4uAAAgD8AAIA/SiGVPiTgTb1vWxA8rqOfunsqtb6yGmO7AACAPwAAgD8z4XK9w/0NujjXWzrzK861Z2+hu/vwxbQAAAAAAACAP3q3CL5uX5s9lYTvPUV3ML4xbws7WmJKOwAAAAAAAAAAQO+0va4xo7qNcoM4PFuSM+ijzzp/+5a3AACAPwAAAABa4zW+gwB1vC7Zf7qLwpm4piLRPRkboTkAAIA/AACAP6C/BL7JblU9g2DcPJ9cKr6ySYQ7Zo6MvAAAAAAAAAAAJtrpvfjC/jwmgge9ggwkvi1wc7y4+Cy9AAAAAAAAAADQ9Z8+wLsDP27Y87shw72+EBHwPYBL5jsAAAAAAAAAAKB5lz7ZUnU+n9EKvgCRVL6D1WA9DAU4vQAAAAAAAAAARsFoPsvRiT49dF++1wKNviCdhLyjH9+8AAAAAAAAAAANgdo9j6ZdulhmazR/HsotnF8/u8dqj7MAAAAAAACAP+ZxkL1C1MI/PQ60voTgmzxMp0i9sBj0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+m6po9LYiMAWyUS+2MAXSUR0CUjgHB1s+FdX2UKGgGR0BfXdFWn0kGaAdN6ANoCEdAlI6sAvL5h3V9lChoBkdAYdRGQSzw+mgHTegDaAhHQJSOHim2sq91fZQoaAZHQEimH7gsK9hoB0viaAhHQJSPWb2Dg651fZQoaAZHQHLyyy2QXANoB01GAWgIR0CUj24TbnHOdX2UKGgGR0Bwfcr3Cbc5aAdNpgFoCEdAlI75QtSQ5nV9lChoBkdAcB+Cj1wo9mgHS/VoCEdAlI/c4gieNHV9lChoBkdAcaX+sHSncmgHTR8BaAhHQJSRIMPSUkh1fZQoaAZHQG31ND+irT9oB0v5aAhHQJSQOiDdxhl1fZQoaAZHQHK4QmNR3vBoB0v2aAhHQJSRP+MqBmR1fZQoaAZHQHBem3rleWxoB0vraAhHQJSRTI3irDJ1fZQoaAZHQHCcaInBtUJoB00PAWgIR0CUkxzLfUF0dX2UKGgGR0BwauUgSvkjaAdL+mgIR0CUk7pCKJl8dX2UKGgGR0Bxh2JWNm16aAdNBQFoCEdAlJSr4nF5wHV9lChoBkdAbasJiRW912gHS9doCEdAlJS/EKmbb3V9lChoBkdAbyNXFLnLaGgHS+VoCEdAlJX2bLEDQ3V9lChoBkdAbTliMo+fRWgHS9poCEdAlJZqyjYZmHV9lChoBkdAcmEyLQ5WBGgHTUcBaAhHQJSVsbIcR151fZQoaAZHQHAexEjPfKpoB0vzaAhHQJSV+Bg/keZ1fZQoaAZHQHArOFYdQwdoB0vwaAhHQJSXSHUMG5d1fZQoaAZHQDreQRwqAjJoB0vOaAhHQJSYmXNTtLN1fZQoaAZHQG7qpKjBVMpoB0vZaAhHQJSX8xXXAdp1fZQoaAZHQG1Jlar3j+9oB0vkaAhHQJSZiVpsXSB1fZQoaAZHQHF8I7A+IM1oB00GAWgIR0CUmQuoxYaHdX2UKGgGR0BxlSaXrt3OaAdL7mgIR0CUm6iQT238dX2UKGgGR0ByCV2FFlTWaAdL82gIR0CUnNAsCkoGdX2UKGgGR0BuVtocrAgxaAdLxWgIR0CUnOAaef7KdX2UKGgGR0BwaV1ie/YbaAdNIAFoCEdAlJ4nQID5kHV9lChoBkdAcBBxsl9jPWgHS/5oCEdAlJ4+2qkuYnV9lChoBkdAcZpc2BJ7LWgHS+9oCEdAlJ78M/hVEXV9lChoBkdAb7Y+yquKXWgHS85oCEdAlJ8F5KODJ3V9lChoBkdAcVOJtzjm0WgHTQ4BaAhHQJSeupGWldl1fZQoaAZHQF1Cet0V8CxoB03oA2gIR0CUn6KoQ4CIdX2UKGgGR0BuXjEcbR4RaAdL7mgIR0CUoN/jsD4hdX2UKGgGR0BrT1+Zw4sFaAdNFgJoCEdAlKBfn4fwJHV9lChoBkdAcRuIk7fYSWgHS+1oCEdAlKBga72+PHV9lChoBkdAbv2FaB7NS2gHTU8BaAhHQJSgihZha1V1fZQoaAZHQG7+FhoduHhoB0veaAhHQJSikC8vmHR1fZQoaAZHQG8xSpJf6XVoB0viaAhHQJSlRLuhK151fZQoaAZHQDQ1HMEA5rBoB0vHaAhHQJSlQ2FWXC11fZQoaAZHQHHns36yjYZoB00VAWgIR0CUpYnjABT5dX2UKGgGR0BwgVwQ176YaAdNGwFoCEdAlKXMxoIv8XV9lChoBkdAcFClNlAeJmgHS/hoCEdAlKbMC5mRNnV9lChoBkdAMszGYKIBR2gHS8toCEdAlKa9GViWmnV9lChoBkdAb3ymE4//vWgHS+hoCEdAlKbpeqrBCXV9lChoBkdAZlarGza9K2gHTbkCaAhHQJSn6kHlfZ51fZQoaAZHQHBXo4Qz1sdoB000AWgIR0CUqAZdv864dX2UKGgGR0BwvYjzI3iraAdL52gIR0CUqBnkkrwwdX2UKGgGR0BulW9i+cpcaAdL6GgIR0CUp5LRrrPddX2UKGgGR0BwPbzxwyZbaAdNPwFoCEdAlKhoE8q4IHV9lChoBkdAcLjGPPszEmgHTVQBaAhHQJSqpjG1hLJ1fZQoaAZHQHD3xPKuB+ZoB0vsaAhHQJSsMjHGS6l1fZQoaAZHQG/VizLOiWVoB0vgaAhHQJStWHKwIMV1fZQoaAZHQHOD+c6Nly1oB00wAWgIR0CUrrfjjrAydX2UKGgGR0Bu2CIacZtOaAdL8GgIR0CUr0vitJWedX2UKGgGR0BvKBnFo+OfaAdNAgFoCEdAlK+3nyNGVnV9lChoBkdAcSw5O8Cgb2gHTQgBaAhHQJSwDvWpZOl1fZQoaAZHQHGPdwaR6nloB00ZAWgIR0CUr4TpxFRYdX2UKGgGR0BwXuz8gpz+aAdL4WgIR0CUr6uJk5IZdX2UKGgGR0Bt69jTa0x/aAdNhQFoCEdAlLIAuqWC3HV9lChoBkdAbzyLc9GI9GgHS+BoCEdAlLJRcu8K5XV9lChoBkdAF6CXQdCE6GgHTegDaAhHQJSzdOBUaQ51fZQoaAZHQHBSL6Hj6vdoB0vjaAhHQJS1NZLZi/h1fZQoaAZHQHEAl32VVxVoB002AmgIR0CUtL5DZ13ddX2UKGgGR0Btiy8BdUsGaAdL02gIR0CUtv5Yoy9FdX2UKGgGR0AzRH5rP+n7aAdL7mgIR0CUt5KNAC4jdX2UKGgGR0BxLTKDCgscaAdNTQFoCEdAlLev+KjzqnV9lChoBkdAcL6cYIjW1GgHTQMBaAhHQJS3w8Tzund1fZQoaAZHQHAKYG6f8MxoB0vcaAhHQJS3QzO5avB1fZQoaAZHQGITnaFmFrVoB03oA2gIR0CUt+LThHbzdX2UKGgGR0BvdM5lvqC6aAdL82gIR0CUt+uivgWKdX2UKGgGR0By0/5vcafjaAdNDwFoCEdAlLlUnTiKi3V9lChoBkdAcBXFpwjt5WgHS8VoCEdAlLjtkauOj3V9lChoBkdAbwc3w1BMSWgHS/1oCEdAlLvcM7U5MnV9lChoBkdAZQfSZSeiBWgHTYcCaAhHQJS7oS26TW51fZQoaAZHQHAXVum78NxoB00FAWgIR0CUvWJV81GcdX2UKGgGR0BI44Xwb2lEaAdL32gIR0CUvtqvvBrOdX2UKGgGR0A1k8gIQe3haAdLwmgIR0CUvjRNATqTdX2UKGgGR0Bw0r+GXXyzaAdLvGgIR0CUv4DlYEGJdX2UKGgGR0BxZCdwvQF+aAdNCAFoCEdAlL+2oFV1fXV9lChoBkdAcR1wdKdxyWgHS+9oCEdAlL8URSP2f3V9lChoBkdAciRJVKf4AWgHS+5oCEdAlL+ehGpdbHV9lChoBkdAbgAkJKJ2uGgHS/poCEdAlMGAm7aqTHV9lChoBkdAM3POMVDa5GgHS8doCEdAlMLy0ngHeXV9lChoBkdAQS1XRw6ySmgHS8hoCEdAlMMClzltCXV9lChoBkdAcU+2nKnvUmgHTW0BaAhHQJTEh6u4gA91fZQoaAZHQG6WwRGtp25oB0vbaAhHQJTGYTJyQxN1fZQoaAZHQEdjoGpuMuRoB03oA2gIR0CUx8dZ7ojfdX2UKGgGR0BwSnq7iADraAdNswFoCEdAlMgVVcUuc3V9lChoBkdAbxavV3EAHWgHS+JoCEdAlMfvqTr3TXV9lChoBkdAcSUkTHsC1mgHS/FoCEdAlMkxlHz6J3V9lChoBkdAbKL+jua4MGgHS+xoCEdAlMll+qioKnV9lChoBkdAcDfBoVVPvmgHS/9oCEdAlMqkQK8cuXV9lChoBkdASgxTCLuQZGgHS8RoCEdAlMoq7Ackt3V9lChoBkdAcIaX4j8k2WgHS/ZoCEdAlMo7x/d69nV9lChoBkdAcUW8mKIi1WgHS8NoCEdAlMtiTINmUXV9lChoBkdAYezgSeyzHGgHTegDaAhHQJTKtog3cYZ1fZQoaAZHQHAFNDMNc4ZoB0viaAhHQJTLzt3OfNB1fZQoaAZHwDJWFDfFaStoB0u5aAhHQJTN/hS9/SZ1fZQoaAZHQHBVcm0E5hloB0vKaAhHQJTOE9aEBbR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a138f7ab6b49cdcab2d9e02a14ef579cf70eef4f54d17577972b9694878eaa9b
|
3 |
+
size 148003
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e55387a36d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e55387a3760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e55387a37f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e55387a3880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e55387a3910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e55387a39a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e55387a3a30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e55387a3ac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e55387a3b50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e55387a3be0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e55387a3c70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e55387a3d00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e5538942800>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710071581767340442,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNJHz3D8Xy6P5oNuTeCL7SRKi25E44kOAAAgD8AAIA/zZUmvj0UGbsq6YE8M5/hO4LegTy2rdG8AACAPwAAgD+yP6m+cheOP4Xo6L7cPfu+xT+XvuFNITwAAAAAAAAAABP6Or5oFbW8aIP+OEabtzfTpB4+g3g4uAAAgD8AAIA/SiGVPiTgTb1vWxA8rqOfunsqtb6yGmO7AACAPwAAgD8z4XK9w/0NujjXWzrzK861Z2+hu/vwxbQAAAAAAACAP3q3CL5uX5s9lYTvPUV3ML4xbws7WmJKOwAAAAAAAAAAQO+0va4xo7qNcoM4PFuSM+ijzzp/+5a3AACAPwAAAABa4zW+gwB1vC7Zf7qLwpm4piLRPRkboTkAAIA/AACAP6C/BL7JblU9g2DcPJ9cKr6ySYQ7Zo6MvAAAAAAAAAAAJtrpvfjC/jwmgge9ggwkvi1wc7y4+Cy9AAAAAAAAAADQ9Z8+wLsDP27Y87shw72+EBHwPYBL5jsAAAAAAAAAAKB5lz7ZUnU+n9EKvgCRVL6D1WA9DAU4vQAAAAAAAAAARsFoPsvRiT49dF++1wKNviCdhLyjH9+8AAAAAAAAAAANgdo9j6ZdulhmazR/HsotnF8/u8dqj7MAAAAAAACAP+ZxkL1C1MI/PQ60voTgmzxMp0i9sBj0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+m6po9LYiMAWyUS+2MAXSUR0CUjgHB1s+FdX2UKGgGR0BfXdFWn0kGaAdN6ANoCEdAlI6sAvL5h3V9lChoBkdAYdRGQSzw+mgHTegDaAhHQJSOHim2sq91fZQoaAZHQEimH7gsK9hoB0viaAhHQJSPWb2Dg651fZQoaAZHQHLyyy2QXANoB01GAWgIR0CUj24TbnHOdX2UKGgGR0Bwfcr3Cbc5aAdNpgFoCEdAlI75QtSQ5nV9lChoBkdAcB+Cj1wo9mgHS/VoCEdAlI/c4gieNHV9lChoBkdAcaX+sHSncmgHTR8BaAhHQJSRIMPSUkh1fZQoaAZHQG31ND+irT9oB0v5aAhHQJSQOiDdxhl1fZQoaAZHQHK4QmNR3vBoB0v2aAhHQJSRP+MqBmR1fZQoaAZHQHBem3rleWxoB0vraAhHQJSRTI3irDJ1fZQoaAZHQHCcaInBtUJoB00PAWgIR0CUkxzLfUF0dX2UKGgGR0BwauUgSvkjaAdL+mgIR0CUk7pCKJl8dX2UKGgGR0Bxh2JWNm16aAdNBQFoCEdAlJSr4nF5wHV9lChoBkdAbasJiRW912gHS9doCEdAlJS/EKmbb3V9lChoBkdAbyNXFLnLaGgHS+VoCEdAlJX2bLEDQ3V9lChoBkdAbTliMo+fRWgHS9poCEdAlJZqyjYZmHV9lChoBkdAcmEyLQ5WBGgHTUcBaAhHQJSVsbIcR151fZQoaAZHQHAexEjPfKpoB0vzaAhHQJSV+Bg/keZ1fZQoaAZHQHArOFYdQwdoB0vwaAhHQJSXSHUMG5d1fZQoaAZHQDreQRwqAjJoB0vOaAhHQJSYmXNTtLN1fZQoaAZHQG7qpKjBVMpoB0vZaAhHQJSX8xXXAdp1fZQoaAZHQG1Jlar3j+9oB0vkaAhHQJSZiVpsXSB1fZQoaAZHQHF8I7A+IM1oB00GAWgIR0CUmQuoxYaHdX2UKGgGR0BxlSaXrt3OaAdL7mgIR0CUm6iQT238dX2UKGgGR0ByCV2FFlTWaAdL82gIR0CUnNAsCkoGdX2UKGgGR0BuVtocrAgxaAdLxWgIR0CUnOAaef7KdX2UKGgGR0BwaV1ie/YbaAdNIAFoCEdAlJ4nQID5kHV9lChoBkdAcBBxsl9jPWgHS/5oCEdAlJ4+2qkuYnV9lChoBkdAcZpc2BJ7LWgHS+9oCEdAlJ78M/hVEXV9lChoBkdAb7Y+yquKXWgHS85oCEdAlJ8F5KODJ3V9lChoBkdAcVOJtzjm0WgHTQ4BaAhHQJSeupGWldl1fZQoaAZHQF1Cet0V8CxoB03oA2gIR0CUn6KoQ4CIdX2UKGgGR0BuXjEcbR4RaAdL7mgIR0CUoN/jsD4hdX2UKGgGR0BrT1+Zw4sFaAdNFgJoCEdAlKBfn4fwJHV9lChoBkdAcRuIk7fYSWgHS+1oCEdAlKBga72+PHV9lChoBkdAbv2FaB7NS2gHTU8BaAhHQJSgihZha1V1fZQoaAZHQG7+FhoduHhoB0veaAhHQJSikC8vmHR1fZQoaAZHQG8xSpJf6XVoB0viaAhHQJSlRLuhK151fZQoaAZHQDQ1HMEA5rBoB0vHaAhHQJSlQ2FWXC11fZQoaAZHQHHns36yjYZoB00VAWgIR0CUpYnjABT5dX2UKGgGR0BwgVwQ176YaAdNGwFoCEdAlKXMxoIv8XV9lChoBkdAcFClNlAeJmgHS/hoCEdAlKbMC5mRNnV9lChoBkdAMszGYKIBR2gHS8toCEdAlKa9GViWmnV9lChoBkdAb3ymE4//vWgHS+hoCEdAlKbpeqrBCXV9lChoBkdAZlarGza9K2gHTbkCaAhHQJSn6kHlfZ51fZQoaAZHQHBXo4Qz1sdoB000AWgIR0CUqAZdv864dX2UKGgGR0BwvYjzI3iraAdL52gIR0CUqBnkkrwwdX2UKGgGR0BulW9i+cpcaAdL6GgIR0CUp5LRrrPddX2UKGgGR0BwPbzxwyZbaAdNPwFoCEdAlKhoE8q4IHV9lChoBkdAcLjGPPszEmgHTVQBaAhHQJSqpjG1hLJ1fZQoaAZHQHD3xPKuB+ZoB0vsaAhHQJSsMjHGS6l1fZQoaAZHQG/VizLOiWVoB0vgaAhHQJStWHKwIMV1fZQoaAZHQHOD+c6Nly1oB00wAWgIR0CUrrfjjrAydX2UKGgGR0Bu2CIacZtOaAdL8GgIR0CUr0vitJWedX2UKGgGR0BvKBnFo+OfaAdNAgFoCEdAlK+3nyNGVnV9lChoBkdAcSw5O8Cgb2gHTQgBaAhHQJSwDvWpZOl1fZQoaAZHQHGPdwaR6nloB00ZAWgIR0CUr4TpxFRYdX2UKGgGR0BwXuz8gpz+aAdL4WgIR0CUr6uJk5IZdX2UKGgGR0Bt69jTa0x/aAdNhQFoCEdAlLIAuqWC3HV9lChoBkdAbzyLc9GI9GgHS+BoCEdAlLJRcu8K5XV9lChoBkdAF6CXQdCE6GgHTegDaAhHQJSzdOBUaQ51fZQoaAZHQHBSL6Hj6vdoB0vjaAhHQJS1NZLZi/h1fZQoaAZHQHEAl32VVxVoB002AmgIR0CUtL5DZ13ddX2UKGgGR0Btiy8BdUsGaAdL02gIR0CUtv5Yoy9FdX2UKGgGR0AzRH5rP+n7aAdL7mgIR0CUt5KNAC4jdX2UKGgGR0BxLTKDCgscaAdNTQFoCEdAlLev+KjzqnV9lChoBkdAcL6cYIjW1GgHTQMBaAhHQJS3w8Tzund1fZQoaAZHQHAKYG6f8MxoB0vcaAhHQJS3QzO5avB1fZQoaAZHQGITnaFmFrVoB03oA2gIR0CUt+LThHbzdX2UKGgGR0BvdM5lvqC6aAdL82gIR0CUt+uivgWKdX2UKGgGR0By0/5vcafjaAdNDwFoCEdAlLlUnTiKi3V9lChoBkdAcBXFpwjt5WgHS8VoCEdAlLjtkauOj3V9lChoBkdAbwc3w1BMSWgHS/1oCEdAlLvcM7U5MnV9lChoBkdAZQfSZSeiBWgHTYcCaAhHQJS7oS26TW51fZQoaAZHQHAXVum78NxoB00FAWgIR0CUvWJV81GcdX2UKGgGR0BI44Xwb2lEaAdL32gIR0CUvtqvvBrOdX2UKGgGR0A1k8gIQe3haAdLwmgIR0CUvjRNATqTdX2UKGgGR0Bw0r+GXXyzaAdLvGgIR0CUv4DlYEGJdX2UKGgGR0BxZCdwvQF+aAdNCAFoCEdAlL+2oFV1fXV9lChoBkdAcR1wdKdxyWgHS+9oCEdAlL8URSP2f3V9lChoBkdAciRJVKf4AWgHS+5oCEdAlL+ehGpdbHV9lChoBkdAbgAkJKJ2uGgHS/poCEdAlMGAm7aqTHV9lChoBkdAM3POMVDa5GgHS8doCEdAlMLy0ngHeXV9lChoBkdAQS1XRw6ySmgHS8hoCEdAlMMClzltCXV9lChoBkdAcU+2nKnvUmgHTW0BaAhHQJTEh6u4gA91fZQoaAZHQG6WwRGtp25oB0vbaAhHQJTGYTJyQxN1fZQoaAZHQEdjoGpuMuRoB03oA2gIR0CUx8dZ7ojfdX2UKGgGR0BwSnq7iADraAdNswFoCEdAlMgVVcUuc3V9lChoBkdAbxavV3EAHWgHS+JoCEdAlMfvqTr3TXV9lChoBkdAcSUkTHsC1mgHS/FoCEdAlMkxlHz6J3V9lChoBkdAbKL+jua4MGgHS+xoCEdAlMll+qioKnV9lChoBkdAcDfBoVVPvmgHS/9oCEdAlMqkQK8cuXV9lChoBkdASgxTCLuQZGgHS8RoCEdAlMoq7Ackt3V9lChoBkdAcIaX4j8k2WgHS/ZoCEdAlMo7x/d69nV9lChoBkdAcUW8mKIi1WgHS8NoCEdAlMtiTINmUXV9lChoBkdAYezgSeyzHGgHTegDaAhHQJTKtog3cYZ1fZQoaAZHQHAFNDMNc4ZoB0viaAhHQJTLzt3OfNB1fZQoaAZHwDJWFDfFaStoB0u5aAhHQJTN/hS9/SZ1fZQoaAZHQHBVcm0E5hloB0vKaAhHQJTOE9aEBbR1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12f66f70b4a46448334385ef929b53863fbd6e0edb586930b206762b0913a275
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4ed5a964c26806330f2319543e9716bb796a7750d0d494d1f1bceffe91aee42
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 232.0321456, "std_reward": 54.77246430072426, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-10T12:20:10.267106"}
|