upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +23 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 254.64 +/- 22.65
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5e0ac75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5e0ac7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5e0ac7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5e0ac7790>", "_build": "<function ActorCriticPolicy._build at 0x7fa5e0ac7820>", "forward": "<function ActorCriticPolicy.forward at 0x7fa5e0ac78b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5e0ac7940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa5e0ac79d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5e0ac7a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5e0ac7af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5e0ac7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa5e0abda50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "seed": null, "action_noise": null, "start_time": 1652451600.446371, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADW771z6KU/+gsBvkxiEb4Tzqq97pNlPAAAAAAAAAAAAI+RvKgStz88RKK9ld8dvu5xh70S8a29AAAAAAAAAACt2YU+cUoXvYzTFjxqLJq7BOSCvgVeKbwAAIA/AACAPyPmoj5OZNa8PpuYPGfGW7xPvBa+akEjvQAAAAAAAIA/zYjvPtKh1DweQAY7AbiQuVcwbr5N8T26AACAPwAAgD8ztIe9RavpPmL7Wrz0RgK+s/ttPTjc6rwAAAAAAAAAAM2SUz6kQDA6YpqFu82Rtbc9xIU8uRkoOgAAgD8AAIA/MCwyP0gSuDvugjE7Y38DOJAkmjwKn066AACAPwAAgD/Iyyi/9FfQPR5+C7vf6G25RHsrPqKKJjoAAIA/AACAP1Ci+z73rye9/HMtvXIuFLw/xp0+HS+iNQAAAAAAAIA/M/NrOlKoy7ljHdk6b0PPNS4CMbsUCgG6AACAPwAAgD8T6Cm+hRfXOm3s7jtvLyK5AqO3vPdHEDoAAIA/AACAP6UTk755g10/ZbS0O3ZEor7pZLK8VDDMPQAAAAAAAAAAbVhmvh5nQD+fTRM+/H9Dvq50Kjy4+Wq8AAAAAAAAAADgK2U+NJPDvCXWdbyy6Iu82mEuvnIdWb0AAAAAAACAP2CqUT50ihE/HhX3vPmIFr6+oRS8+OWMPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8KZbdoiWXkCUhpRSlIwBbJRN6AOMAXSUR0B73Uhs67uldX2UKGgGaAloD0MIZwqd19gNScCUhpRSlGgVTVkBaBZHQHvdhOUMXrN1fZQoaAZoCWgPQwjwEwfQ75ZdQJSGlFKUaBVN6ANoFkdAe+SdQO4G2XV9lChoBmgJaA9DCEHyzqEMeFxAlIaUUpRoFU3oA2gWR0B8Uu0AtFrmdX2UKGgGaAloD0MIxAq3fKRjYkCUhpRSlGgVTegDaBZHQHxsy6Ymb9Z1fZQoaAZoCWgPQwitFW2Oc5vTv5SGlFKUaBVL/GgWR0B8de6OHWSVdX2UKGgGaAloD0MIoBuastOuV0CUhpRSlGgVTegDaBZHQHx4oduHerN1fZQoaAZoCWgPQwie0yzQ7lgswJSGlFKUaBVNhwFoFkdAfJ2qD9OymnV9lChoBmgJaA9DCCRCI9i4MjhAlIaUUpRoFU1MAWgWR0B8s3w6QvHtdX2UKGgGaAloD0MIkNyadFu7V0CUhpRSlGgVTegDaBZHQHzHejqOcUd1fZQoaAZoCWgPQwgRxk/jXt5hQJSGlFKUaBVN6ANoFkdAfMq9roGIK3V9lChoBmgJaA9DCLNhTWVReFdAlIaUUpRoFU3oA2gWR0B85xxuKoAGdX2UKGgGaAloD0MIWaSJd4BvXkCUhpRSlGgVTegDaBZHQHzrf5k9U0h1fZQoaAZoCWgPQwjkLsIU5dBCQJSGlFKUaBVN6ANoFkdAfO03pfQa73V9lChoBmgJaA9DCExQw7ewpF5AlIaUUpRoFU3oA2gWR0B8+RxlxwQ2dX2UKGgGaAloD0MIAg02dR6HXkCUhpRSlGgVTegDaBZHQH0IKu8scyZ1fZQoaAZoCWgPQwhBR6ta0pU0wJSGlFKUaBVNMQFoFkdAfRAN5dGAkXV9lChoBmgJaA9DCOLkfoeie2FAlIaUUpRoFU3oA2gWR0B9FjeoDPnkdX2UKGgGaAloD0MIYCAIkKGfNUCUhpRSlGgVTSMBaBZHQH064I0IkZ91fZQoaAZoCWgPQwjZCMTr+gVOwJSGlFKUaBVNRQFoFkdAfUcD5CWu5nV9lChoBmgJaA9DCKwfm+RHWV1AlIaUUpRoFU3oA2gWR0B9UFhZyMkydX2UKGgGaAloD0MI5xcl6C+UU0CUhpRSlGgVTegDaBZHQH1VuH8CPp91fZQoaAZoCWgPQwgNiuYBLKpTQJSGlFKUaBVN6ANoFkdAfV2D+BH09XV9lChoBmgJaA9DCKCnAYOksV1AlIaUUpRoFU3oA2gWR0B95l7x/d6+dX2UKGgGaAloD0MIHTnSGRgbYUCUhpRSlGgVTegDaBZHQH3wMnuy/sV1fZQoaAZoCWgPQwj8prBSQUFaQJSGlFKUaBVN6ANoFkdAffMIDHOryXV9lChoBmgJaA9DCGbdPxaiuzXAlIaUUpRoFU1KAWgWR0B9+H6XSjQBdX2UKGgGaAloD0MIUwWjkjrRGMCUhpRSlGgVTRcBaBZHQH3/eJUHY6J1fZQoaAZoCWgPQwgZH2Yv22VfQJSGlFKUaBVN6ANoFkdAfhP5ULlV+HV9lChoBmgJaA9DCNkKmpZYy19AlIaUUpRoFU3oA2gWR0B+NhUxVQyidX2UKGgGaAloD0MIwsBz7+FPYUCUhpRSlGgVTegDaBZHQH444UahpQF1fZQoaAZoCWgPQwj5FADjGZVaQJSGlFKUaBVN6ANoFkdAfk+Rbr1M/XV9lChoBmgJaA9DCBsRjINLbyTAlIaUUpRoFU1YAWgWR0B+VLadtl7MdX2UKGgGaAloD0MIdvpBXaQ4NECUhpRSlGgVS/VoFkdAflW5KODJ2nV9lChoBmgJaA9DCO23dqIk2V9AlIaUUpRoFU3oA2gWR0B+YSgDifg8dX2UKGgGaAloD0MIrp6T3jdVXkCUhpRSlGgVTegDaBZHQH5vi8e0Xxh1fZQoaAZoCWgPQwjH155ZEntXQJSGlFKUaBVN6ANoFkdAfncTqSowVXV9lChoBmgJaA9DCHv0hvvIfFtAlIaUUpRoFU3oA2gWR0B+fJph4MWodX2UKGgGaAloD0MINbIrLSPlS0CUhpRSlGgVTegDaBZHQH6ftaIN3GJ1fZQoaAZoCWgPQwiobi7+tucXwJSGlFKUaBVNCAFoFkdAfqYVLzwtrnV9lChoBmgJaA9DCJKzsKcdW1VAlIaUUpRoFU3oA2gWR0B+st0hePaMdX2UKGgGaAloD0MIwTv59NjTX0CUhpRSlGgVTegDaBZHQH63265Gz8h1fZQoaAZoCWgPQwiN1Hsqpy01QJSGlFKUaBVL6WgWR0B/QO4jKPn0dX2UKGgGaAloD0MIx0s3iUEcY0CUhpRSlGgVTegDaBZHQH9BuCTUy591fZQoaAZoCWgPQwi8IvjfSs9eQJSGlFKUaBVN6ANoFkdAf0qoo/iYLXV9lChoBmgJaA9DCG1TPC6qCF5AlIaUUpRoFU3oA2gWR0B/TUbADaGpdX2UKGgGaAloD0MIXFg33h11MsCUhpRSlGgVTWoBaBZHQH9QwmzByjp1fZQoaAZoCWgPQwhy3v/HCSxSQJSGlFKUaBVN6ANoFkdAf1lxH5Jsf3V9lChoBmgJaA9DCGiSWFLurFxAlIaUUpRoFU3oA2gWR0B/j+anaWX1dX2UKGgGaAloD0MI/Wg4ZW5cWkCUhpRSlGgVTegDaBZHQH+SxbGFSKp1fZQoaAZoCWgPQwhVF/Ayw+YYQJSGlFKUaBVNMwFoFkdAf6CwSamXPnV9lChoBmgJaA9DCKg5eZEJ62FAlIaUUpRoFU3oA2gWR0B/rStDD0lJdX2UKGgGaAloD0MIaF4Ou+8aYUCUhpRSlGgVTegDaBZHQH+zAHeJpFl1fZQoaAZoCWgPQwgPJzCd1ndbQJSGlFKUaBVN6ANoFkdAf7QnaFmFrXV9lChoBmgJaA9DCBuEud1LkWBAlIaUUpRoFU3oA2gWR0B/z9Cb+cYqdX2UKGgGaAloD0MID2H8NO5iW0CUhpRSlGgVTegDaBZHQH/YQ1zhgmZ1fZQoaAZoCWgPQwhlbynni3NHQJSGlFKUaBVN6ANoFkdAf95s/IKc/nV9lChoBmgJaA9DCF9hwf2AXV1AlIaUUpRoFU3oA2gWR0CABkT5ftx/dX2UKGgGaAloD0MIaeId4EmYYECUhpRSlGgVTegDaBZHQIAP4xpL26F1fZQoaAZoCWgPQwiTUWUYd1slwJSGlFKUaBVNOwFoFkdAgBZwSJ0nxHV9lChoBmgJaA9DCPZBlgUTX1lAlIaUUpRoFU3oA2gWR0CAWShUzbeudX2UKGgGaAloD0MIjjulg/VAWkCUhpRSlGgVTegDaBZHQIBZqE8JUo91fZQoaAZoCWgPQwhGQ8ajVMLHP5SGlFKUaBVNHAFoFkdAgFnurZJ04nV9lChoBmgJaA9DCEJBKVq50FRAlIaUUpRoFU3oA2gWR0CAXks4ku6FdX2UKGgGaAloD0MIRfC/leySXkCUhpRSlGgVTegDaBZHQIBhHgLqlgt1fZQoaAZoCWgPQwhLBRVVv0FhQJSGlFKUaBVN6ANoFkdAgGUyquKXOXV9lChoBmgJaA9DCNI2/kRlKVRAlIaUUpRoFU3oA2gWR0CAfscawUxmdX2UKGgGaAloD0MII2b2eYzVXkCUhpRSlGgVTegDaBZHQICAIQSSNfh1fZQoaAZoCWgPQwjYCwVsB6ddQJSGlFKUaBVN6ANoFkdAgIaqnWJ79nV9lChoBmgJaA9DCAeaz7nbJFhAlIaUUpRoFU3oA2gWR0CAjAKzAvcrdX2UKGgGaAloD0MIgzRj0XQMWECUhpRSlGgVTegDaBZHQICOpWV/tpp1fZQoaAZoCWgPQwgWaeId4F9cQJSGlFKUaBVN6ANoFkdAgI8tozvZy3V9lChoBmgJaA9DCGqF6XsNKUPAlIaUUpRoFU1iAWgWR0CAkxTER8MNdX2UKGgGaAloD0MI/N6mP/uQXECUhpRSlGgVTegDaBZHQICfkvoNd7h1fZQoaAZoCWgPQwg6BfnZyD1cQJSGlFKUaBVN6ANoFkdAgKJ32dupCXV9lChoBmgJaA9DCCS3Jt2WuCtAlIaUUpRoFUv9aBZHQICvfXXiBGx1fZQoaAZoCWgPQwhEh8CRQKMIwJSGlFKUaBVNngFoFkdAgL5OaF23a3V9lChoBmgJaA9DCECKOnMPR1lAlIaUUpRoFU3oA2gWR0CAwQcENe+mdX2UKGgGaAloD0MIOKEQAYcuQcCUhpRSlGgVTWoBaBZHQIDEb9wWFex1fZQoaAZoCWgPQwil942vPeZXQJSGlFKUaBVN6ANoFkdAgMcZwn6VMXV9lChoBmgJaA9DCAjm6PF72yDAlIaUUpRoFU0WAWgWR0CA1+e8wpOOdX2UKGgGaAloD0MIGlHaG3znWkCUhpRSlGgVTegDaBZHQIEKB6+nIhh1fZQoaAZoCWgPQwhOucK7XCxWQJSGlFKUaBVN6ANoFkdAgQqDtw71ZnV9lChoBmgJaA9DCLKC34YYa1hAlIaUUpRoFU3oA2gWR0CBCtD7ZWaMdX2UKGgGaAloD0MIEarU7IH0VUCUhpRSlGgVTegDaBZHQIEOwkqtozx1fZQoaAZoCWgPQwgLCRhd3t9fQJSGlFKUaBVN6ANoFkdAgRGmNR3u/nV9lChoBmgJaA9DCHbgnBElmmBAlIaUUpRoFU3oA2gWR0CBMzycTakAdX2UKGgGaAloD0MIcAorFVQaW0CUhpRSlGgVTegDaBZHQIE01klNUOx1fZQoaAZoCWgPQwjThsPSwCcnQJSGlFKUaBVNRQFoFkdAgTeonBtUGXV9lChoBmgJaA9DCLeyRGeZn1lAlIaUUpRoFU3oA2gWR0CBQf0Cih38dX2UKGgGaAloD0MIipKQSNvtWkCUhpRSlGgVTegDaBZHQIFFpemelKt1fZQoaAZoCWgPQwi5/8h06BpZQJSGlFKUaBVN6ANoFkdAgVou7YkE93V9lChoBmgJaA9DCGRA9nr3QlRAlIaUUpRoFU3oA2gWR0CBXV/NqxkedX2UKGgGaAloD0MIDVAaahTyDMCUhpRSlGgVS/NoFkdAgWrgfdRBNXV9lChoBmgJaA9DCFa6u84GbmBAlIaUUpRoFU3oA2gWR0CBe5dpqREGdX2UKGgGaAloD0MIzzC1pQ4gS0CUhpRSlGgVTegDaBZHQIF+ZQN0/4Z1fZQoaAZoCWgPQwiQhegQuIxgQJSGlFKUaBVN6ANoFkdAgYIN+CsfaHV9lChoBmgJaA9DCLfvUX+9m2FAlIaUUpRoFU3oA2gWR0CBhL3pwCKadX2UKGgGaAloD0MIWKmgouqvXUCUhpRSlGgVTegDaBZHQIGVPDBMzuZ1fZQoaAZoCWgPQwjxun7BboBMwJSGlFKUaBVNPwFoFkdAgZn+evpyInVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.3.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.19.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5e0ac75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5e0ac7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5e0ac7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5e0ac7790>", "_build": "<function ActorCriticPolicy._build at 0x7fa5e0ac7820>", "forward": "<function ActorCriticPolicy.forward at 0x7fa5e0ac78b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5e0ac7940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa5e0ac79d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5e0ac7a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5e0ac7af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5e0ac7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa5e0abda50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "seed": null, "action_noise": null, "start_time": 1652453380.0526502, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB/Ir17tsi6+EGUO+O2rTwjuuC6Y3KVPQAAgD8AAIA/WrHjvamEYj8IjM68Lyllvgw3Q704fz27AAAAAAAAAAC7yp6+30h8P8Pzf71+F4i+pNxfvpZXzj0AAAAAAAAAAJrp/bu4LrG724rdvC4TCT0LgJe8fyULvQAAgD8AAIA/M7ktvanvCrzvv4E9ToEkvb5nWb01Qgq+AACAPwAAgD+axyY8rz9YPcD9KL0O+wK+Dr2wuy/6NT0AAAAAAAAAAJq5Ujs1twc+IkcavpxiNb5lPZq95kYZOwAAAAAAAAAAG66dvp56ND8+/G4+p01dvjYo4rz7aLs8AAAAAAAAAABNO+i9B5bRPuhD+LxZdF++VoFPvREQQb0AAAAAAAAAAAC5mzyJohg/stPavRz+bb6DSsu8GNK+vAAAAAAAAAAAfQukPiXGgj9anI68BaOlvkjwWz6anKS8AAAAAAAAAABGEwo+E1coPxV0671MG3y+x6RPPXoDnr0AAAAAAAAAAM0Lbb1c42e6iP+uO9t3wbhPRBe6s/C9twAAgD8AAIA/TbIqPaRCqz2SdAM9bnxvviVsiz3k0LK8AAAAAAAAAACNN4e92bgGP5EhAj6O1ZO+cI6PPAlyqzwAAAAAAAAAAPNWmb2shzs+ZrY/PgDLQr6F0qs9uObbvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHeT1YFLOb0CUhpRSlIwBbJRNGwGMAXSUR0Cn7Z/nW8RMdX2UKGgGaAloD0MIyyvX22a3bkCUhpRSlGgVTXYBaBZHQKfttn9Nvfl1fZQoaAZoCWgPQwjwwWuX9r5xQJSGlFKUaBVNRgFoFkdAp+4hhScbznV9lChoBmgJaA9DCHAnEeHfvmpAlIaUUpRoFU06AWgWR0Cn7kT7VJ+VdX2UKGgGaAloD0MI+HDJcWccckCUhpRSlGgVTUoBaBZHQKfuW0l7dBV1fZQoaAZoCWgPQwjmlettc/RwQJSGlFKUaBVNOgFoFkdAp+8KsQumJnV9lChoBmgJaA9DCN0kBoGVQXBAlIaUUpRoFU0wAWgWR0Cn73vUKArhdX2UKGgGaAloD0MIXi9NEeAeckCUhpRSlGgVTUEBaBZHQKfvg/UONHZ1fZQoaAZoCWgPQwgJ4dHGkSVyQJSGlFKUaBVNOQFoFkdAp++qDTSb6XV9lChoBmgJaA9DCEN1c/E3km9AlIaUUpRoFU0mAWgWR0Cn8Ep2t+1CdX2UKGgGaAloD0MIR8mrcwx/bkCUhpRSlGgVTS8BaBZHQKfwY0Y0l7d1fZQoaAZoCWgPQwgIWoEhq/RwQJSGlFKUaBVNQwFoFkdAp/B4WgvlEXV9lChoBmgJaA9DCGlznNvEaHFAlIaUUpRoFU1QAWgWR0Cn8UTZQHiWdX2UKGgGaAloD0MIOE4K8x4HbkCUhpRSlGgVTTQBaBZHQKfxfKODJ2d1fZQoaAZoCWgPQwhD5zV2iR1xQJSGlFKUaBVNQwFoFkdAp/GST4cm0HV9lChoBmgJaA9DCFJEhlW8dGxAlIaUUpRoFU0nAWgWR0Cn8azFERapdX2UKGgGaAloD0MIwRn8/WIKRUCUhpRSlGgVS+1oFkdAp/IPjn3cpXV9lChoBmgJaA9DCELpCyHn+0NAlIaUUpRoFU0SAWgWR0Cn8l+k56t1dX2UKGgGaAloD0MIjubIyq/ccECUhpRSlGgVTRABaBZHQKfygrWiDdx1fZQoaAZoCWgPQwia7J+nAQJwQJSGlFKUaBVNPgFoFkdAp/KU0cfeUXV9lChoBmgJaA9DCJUMAFUc+XBAlIaUUpRoFU1SAWgWR0Cn8sWJJoTPdX2UKGgGaAloD0MIweEFEWkackCUhpRSlGgVTSgBaBZHQKf0D17pmmN1fZQoaAZoCWgPQwj600Z1upFwQJSGlFKUaBVNDwFoFkdAp/S9cIJJG3V9lChoBmgJaA9DCL/udOdJknJAlIaUUpRoFU1NAWgWR0Cn9LwLE1l5dX2UKGgGaAloD0MIP+PCgRDrcUCUhpRSlGgVTXIBaBZHQKf09va11GN1fZQoaAZoCWgPQwiDonkAi11xQJSGlFKUaBVNPAFoFkdAp/WKD/VAiXV9lChoBmgJaA9DCDUmxFySYHJAlIaUUpRoFU1NAWgWR0Cn9cb4SHuadX2UKGgGaAloD0MIKAr0iTz1cECUhpRSlGgVTZIBaBZHQKf2bdv863l1fZQoaAZoCWgPQwgOorWijd5wQJSGlFKUaBVNMgFoFkdAp/baU1Q663V9lChoBmgJaA9DCC9uowH8NnBAlIaUUpRoFU0xAWgWR0Cn9xSWJJoTdX2UKGgGaAloD0MI4fHtXYPlbkCUhpRSlGgVTVEBaBZHQKf3OphnanJ1fZQoaAZoCWgPQwiuLTwvlf1vQJSGlFKUaBVNTQFoFkdAp/d0pCrtFHV9lChoBmgJaA9DCJpcjIH1snFAlIaUUpRoFU02AWgWR0Cn95tlAeJYdX2UKGgGaAloD0MINez3xLrYbUCUhpRSlGgVTTEBaBZHQKf3+qPwNLF1fZQoaAZoCWgPQwhlqfV+IydvQJSGlFKUaBVNTQFoFkdAp/hOA9V3lnV9lChoBmgJaA9DCLPQzmkWAHBAlIaUUpRoFU1CAWgWR0Cn+FYCp3otdX2UKGgGaAloD0MILdFZZpGPbUCUhpRSlGgVTVIBaBZHQKf4zfnfVI91fZQoaAZoCWgPQwiUbeAOVAptQJSGlFKUaBVNLwFoFkdAp/miLCN0eXV9lChoBmgJaA9DCLhzYaSXdnFAlIaUUpRoFU00AWgWR0Cn+lgQ6IWQdX2UKGgGaAloD0MIjSWsjXEmckCUhpRSlGgVTT8BaBZHQKf6uxoqTbF1fZQoaAZoCWgPQwgTfT7KSB1yQJSGlFKUaBVNJwFoFkdAp/rVmWdEs3V9lChoBmgJaA9DCCuKV1nbOHJAlIaUUpRoFU1PAWgWR0Cn+tW8AaNudX2UKGgGaAloD0MIgxlTsAZtcECUhpRSlGgVTTgBaBZHQKf7392HLzR1fZQoaAZoCWgPQwghI6DCEQ1uQJSGlFKUaBVNJwFoFkdAp/wZXU6PsHV9lChoBmgJaA9DCJ1KBoCqPnJAlIaUUpRoFU0TAWgWR0Cn/CEIPbwjdX2UKGgGaAloD0MIkWRW73DVb0CUhpRSlGgVTR4BaBZHQKf8f/sE7nx1fZQoaAZoCWgPQwjhehSuR/FuQJSGlFKUaBVNQgFoFkdAp/y5dOZb6nV9lChoBmgJaA9DCNDSFWzj7XFAlIaUUpRoFU1ZAWgWR0Cn/MxDb8FZdX2UKGgGaAloD0MIq5Se6WXmcECUhpRSlGgVTYoBaBZHQKf81a/RE4N1fZQoaAZoCWgPQwjmz7cFizhwQJSGlFKUaBVNPAFoFkdAp/1ehK15SnV9lChoBmgJaA9DCP34S4u6z3JAlIaUUpRoFU1OAWgWR0Cn/fQqAjIJdX2UKGgGaAloD0MIyEPf3UrgbkCUhpRSlGgVTTYBaBZHQKf+FNHH3lF1fZQoaAZoCWgPQwiLpx5pcAhyQJSGlFKUaBVNZwFoFkdAqAhcHhS9/XV9lChoBmgJaA9DCC3RWWaRa3FAlIaUUpRoFU02AWgWR0CoCMztLL6ldX2UKGgGaAloD0MIQ6ooXiUHcUCUhpRSlGgVTSQBaBZHQKgJHvhIe5p1fZQoaAZoCWgPQwjNc0S+S+VxQJSGlFKUaBVNLQFoFkdAqAmPoNd7fHV9lChoBmgJaA9DCDV+4ZWkMGxAlIaUUpRoFU01AWgWR0CoCcTK1XvIdX2UKGgGaAloD0MIL1BSYEHacUCUhpRSlGgVTUsBaBZHQKgKIgkC3gF1fZQoaAZoCWgPQwjWVuwvu41LQJSGlFKUaBVNGwFoFkdAqAs1ZaFEiXV9lChoBmgJaA9DCIkLQKN0jWpAlIaUUpRoFU1XAWgWR0CoC2YyfthNdX2UKGgGaAloD0MIV3cstgkjckCUhpRSlGgVTU4BaBZHQKgLgL/CIk91fZQoaAZoCWgPQwjogvqWOaduQJSGlFKUaBVNUgFoFkdAqAwqROk+HXV9lChoBmgJaA9DCFmkiXeAkHBAlIaUUpRoFU00AWgWR0CoDFyG8EmqdX2UKGgGaAloD0MImn0eozzEcECUhpRSlGgVTVYBaBZHQKgMXSvTw2F1fZQoaAZoCWgPQwgmHHqLR0ZxQJSGlFKUaBVNbQFoFkdAqAxs/r0J4XV9lChoBmgJaA9DCAGloUYhLm5AlIaUUpRoFU0/AWgWR0CoDTHGCI1tdX2UKGgGaAloD0MIQx7BjVQmcECUhpRSlGgVTSsBaBZHQKgNT9ph4MZ1fZQoaAZoCWgPQwhGeHsQghhxQJSGlFKUaBVNHQFoFkdAqA2oqRU3oHV9lChoBmgJaA9DCBowSPo0dnBAlIaUUpRoFU1lAWgWR0CoDfvS+g14dX2UKGgGaAloD0MIVRaFXZSOcECUhpRSlGgVTSgBaBZHQKgOuWfseGR1fZQoaAZoCWgPQwiH4SNiyu5tQJSGlFKUaBVNWgFoFkdAqA8UTzundnV9lChoBmgJaA9DCOmY84x9w21AlIaUUpRoFU06AWgWR0CoD0U3fhuPdX2UKGgGaAloD0MI1SR4QxqrbkCUhpRSlGgVTTgBaBZHQKgPmEt/WlN1fZQoaAZoCWgPQwgSwTi49PdwQJSGlFKUaBVNHQFoFkdAqBAjah6By3V9lChoBmgJaA9DCFyOVyD6WW9AlIaUUpRoFU0iAWgWR0CoEGGjj7yhdX2UKGgGaAloD0MImxw+6URvcECUhpRSlGgVTSEBaBZHQKgQblEJBxB1fZQoaAZoCWgPQwiVC5V/7XZyQJSGlFKUaBVNoAJoFkdAqBE15le4TnV9lChoBmgJaA9DCA7ZQLrYvHJAlIaUUpRoFU0uAWgWR0CoEYPVd5Y6dX2UKGgGaAloD0MIeSRenk6ha0CUhpRSlGgVTUIBaBZHQKgRzmYBvJl1fZQoaAZoCWgPQwj8x0J0iMVwQJSGlFKUaBVNIgFoFkdAqBIdCHARCnV9lChoBmgJaA9DCN+mP/vRznFAlIaUUpRoFU0IAWgWR0CoEnWRRuTBdX2UKGgGaAloD0MIO6buym4McECUhpRSlGgVTXkBaBZHQKgSly8zyjJ1fZQoaAZoCWgPQwinJVZGI6ttQJSGlFKUaBVNPQFoFkdAqBK1MVUMonV9lChoBmgJaA9DCDzZzYx+DXFAlIaUUpRoFU1/AWgWR0CoEuIGhVU/dX2UKGgGaAloD0MIBKkUO5p4bECUhpRSlGgVTTkBaBZHQKgUD/4Irvt1fZQoaAZoCWgPQwhKsg5HlwhwQJSGlFKUaBVNTAFoFkdAqBTLD/EOy3V9lChoBmgJaA9DCN5Wem12v3FAlIaUUpRoFU0tAWgWR0CoFM5ooNNKdX2UKGgGaAloD0MIt7dbkoO4ckCUhpRSlGgVTUgBaBZHQKgU7vLHMll1fZQoaAZoCWgPQwhjesISj6RuQJSGlFKUaBVNKgFoFkdAqBVZ1s+FDnV9lChoBmgJaA9DCEQ0uoMY4HBAlIaUUpRoFU08AWgWR0CoFfO5SWJKdX2UKGgGaAloD0MIVvFG5hF5b0CUhpRSlGgVTeYBaBZHQKgWFZZB9kV1fZQoaAZoCWgPQwi0OGOYk1VvQJSGlFKUaBVNQAFoFkdAqBYTbSJCSnV9lChoBmgJaA9DCIf7yK2JUHBAlIaUUpRoFU0tAWgWR0CoForGrCFcdX2UKGgGaAloD0MIF5tWCgERcECUhpRSlGgVTTQBaBZHQKgXQ/Z/Tb51fZQoaAZoCWgPQwjGwhA5/e5xQJSGlFKUaBVNRgFoFkdAqBdLOTq0MXV9lChoBmgJaA9DCMwKRbofP29AlIaUUpRoFU0fAWgWR0CoF6mjKxLTdX2UKGgGaAloD0MIKxiV1IlJbUCUhpRSlGgVTSQBaBZHQKgX4C1Z1V51fZQoaAZoCWgPQwgEWOTXj+hvQJSGlFKUaBVNRgFoFkdAqBgzbUPQOXV9lChoBmgJaA9DCMTuO4ZHAnFAlIaUUpRoFU1ZAWgWR0CoGDBrN4Z/dX2UKGgGaAloD0MIIorJG6AScECUhpRSlGgVTTcBaBZHQKgYVJYkmhN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021", "Python": "3.8.10", "Stable-Baselines3": "1.3.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.19.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:731eadaa03d7ca38f0d4f16de9061aee2b2936326c0e731e3cf7191082da0f28
|
3 |
+
size 144220
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.3.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,42 +4,40 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
|
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
-
"_abc_impl": "<_abc_data object at
|
19 |
},
|
20 |
"verbose": 1,
|
21 |
"policy_kwargs": {},
|
22 |
"observation_space": {
|
23 |
":type:": "<class 'gym.spaces.box.Box'>",
|
24 |
-
":serialized:": "
|
25 |
"dtype": "float32",
|
26 |
-
"
|
27 |
-
"bounded_above": "[False False False False False False False False]",
|
28 |
-
"_shape": [
|
29 |
8
|
30 |
],
|
31 |
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
-
"
|
34 |
-
"
|
35 |
"_np_random": null
|
36 |
},
|
37 |
"action_space": {
|
38 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
-
":serialized:": "
|
40 |
"n": 4,
|
41 |
-
"
|
42 |
-
"_shape": [],
|
43 |
"dtype": "int64",
|
44 |
"_np_random": null
|
45 |
},
|
@@ -48,16 +46,16 @@
|
|
48 |
"_total_timesteps": 1000000,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "gAWV+
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +68,7 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -87,7 +85,7 @@
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWV+
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"target_kl": null
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5e0ac75e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5e0ac7670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5e0ac7700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5e0ac7790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa5e0ac7820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa5e0ac78b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5e0ac7940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa5e0ac79d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5e0ac7a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5e0ac7af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5e0ac7b80>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa5e0abda50>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
"dtype": "float32",
|
27 |
+
"shape": [
|
|
|
|
|
28 |
8
|
29 |
],
|
30 |
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
"_np_random": null
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
"n": 4,
|
40 |
+
"shape": [],
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
|
|
46 |
"_total_timesteps": 1000000,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1652453380.0526502,
|
50 |
"learning_rate": 0.0003,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'numpy.ndarray'>",
|
58 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB/Ir17tsi6+EGUO+O2rTwjuuC6Y3KVPQAAgD8AAIA/WrHjvamEYj8IjM68Lyllvgw3Q704fz27AAAAAAAAAAC7yp6+30h8P8Pzf71+F4i+pNxfvpZXzj0AAAAAAAAAAJrp/bu4LrG724rdvC4TCT0LgJe8fyULvQAAgD8AAIA/M7ktvanvCrzvv4E9ToEkvb5nWb01Qgq+AACAPwAAgD+axyY8rz9YPcD9KL0O+wK+Dr2wuy/6NT0AAAAAAAAAAJq5Ujs1twc+IkcavpxiNb5lPZq95kYZOwAAAAAAAAAAG66dvp56ND8+/G4+p01dvjYo4rz7aLs8AAAAAAAAAABNO+i9B5bRPuhD+LxZdF++VoFPvREQQb0AAAAAAAAAAAC5mzyJohg/stPavRz+bb6DSsu8GNK+vAAAAAAAAAAAfQukPiXGgj9anI68BaOlvkjwWz6anKS8AAAAAAAAAABGEwo+E1coPxV0671MG3y+x6RPPXoDnr0AAAAAAAAAAM0Lbb1c42e6iP+uO9t3wbhPRBe6s/C9twAAgD8AAIA/TbIqPaRCqz2SdAM9bnxvviVsiz3k0LK8AAAAAAAAAACNN4e92bgGP5EhAj6O1ZO+cI6PPAlyqzwAAAAAAAAAAPNWmb2shzs+ZrY/PgDLQr6F0qs9uObbvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
59 |
},
|
60 |
"_last_episode_starts": {
|
61 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
"_current_progress_remaining": -0.015808000000000044,
|
69 |
"ep_info_buffer": {
|
70 |
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHeT1YFLOb0CUhpRSlIwBbJRNGwGMAXSUR0Cn7Z/nW8RMdX2UKGgGaAloD0MIyyvX22a3bkCUhpRSlGgVTXYBaBZHQKfttn9Nvfl1fZQoaAZoCWgPQwjwwWuX9r5xQJSGlFKUaBVNRgFoFkdAp+4hhScbznV9lChoBmgJaA9DCHAnEeHfvmpAlIaUUpRoFU06AWgWR0Cn7kT7VJ+VdX2UKGgGaAloD0MI+HDJcWccckCUhpRSlGgVTUoBaBZHQKfuW0l7dBV1fZQoaAZoCWgPQwjmlettc/RwQJSGlFKUaBVNOgFoFkdAp+8KsQumJnV9lChoBmgJaA9DCN0kBoGVQXBAlIaUUpRoFU0wAWgWR0Cn73vUKArhdX2UKGgGaAloD0MIXi9NEeAeckCUhpRSlGgVTUEBaBZHQKfvg/UONHZ1fZQoaAZoCWgPQwgJ4dHGkSVyQJSGlFKUaBVNOQFoFkdAp++qDTSb6XV9lChoBmgJaA9DCEN1c/E3km9AlIaUUpRoFU0mAWgWR0Cn8Ep2t+1CdX2UKGgGaAloD0MIR8mrcwx/bkCUhpRSlGgVTS8BaBZHQKfwY0Y0l7d1fZQoaAZoCWgPQwgIWoEhq/RwQJSGlFKUaBVNQwFoFkdAp/B4WgvlEXV9lChoBmgJaA9DCGlznNvEaHFAlIaUUpRoFU1QAWgWR0Cn8UTZQHiWdX2UKGgGaAloD0MIOE4K8x4HbkCUhpRSlGgVTTQBaBZHQKfxfKODJ2d1fZQoaAZoCWgPQwhD5zV2iR1xQJSGlFKUaBVNQwFoFkdAp/GST4cm0HV9lChoBmgJaA9DCFJEhlW8dGxAlIaUUpRoFU0nAWgWR0Cn8azFERapdX2UKGgGaAloD0MIwRn8/WIKRUCUhpRSlGgVS+1oFkdAp/IPjn3cpXV9lChoBmgJaA9DCELpCyHn+0NAlIaUUpRoFU0SAWgWR0Cn8l+k56t1dX2UKGgGaAloD0MIjubIyq/ccECUhpRSlGgVTRABaBZHQKfygrWiDdx1fZQoaAZoCWgPQwia7J+nAQJwQJSGlFKUaBVNPgFoFkdAp/KU0cfeUXV9lChoBmgJaA9DCJUMAFUc+XBAlIaUUpRoFU1SAWgWR0Cn8sWJJoTPdX2UKGgGaAloD0MIweEFEWkackCUhpRSlGgVTSgBaBZHQKf0D17pmmN1fZQoaAZoCWgPQwj600Z1upFwQJSGlFKUaBVNDwFoFkdAp/S9cIJJG3V9lChoBmgJaA9DCL/udOdJknJAlIaUUpRoFU1NAWgWR0Cn9LwLE1l5dX2UKGgGaAloD0MIP+PCgRDrcUCUhpRSlGgVTXIBaBZHQKf09va11GN1fZQoaAZoCWgPQwiDonkAi11xQJSGlFKUaBVNPAFoFkdAp/WKD/VAiXV9lChoBmgJaA9DCDUmxFySYHJAlIaUUpRoFU1NAWgWR0Cn9cb4SHuadX2UKGgGaAloD0MIKAr0iTz1cECUhpRSlGgVTZIBaBZHQKf2bdv863l1fZQoaAZoCWgPQwgOorWijd5wQJSGlFKUaBVNMgFoFkdAp/baU1Q663V9lChoBmgJaA9DCC9uowH8NnBAlIaUUpRoFU0xAWgWR0Cn9xSWJJoTdX2UKGgGaAloD0MI4fHtXYPlbkCUhpRSlGgVTVEBaBZHQKf3OphnanJ1fZQoaAZoCWgPQwiuLTwvlf1vQJSGlFKUaBVNTQFoFkdAp/d0pCrtFHV9lChoBmgJaA9DCJpcjIH1snFAlIaUUpRoFU02AWgWR0Cn95tlAeJYdX2UKGgGaAloD0MINez3xLrYbUCUhpRSlGgVTTEBaBZHQKf3+qPwNLF1fZQoaAZoCWgPQwhlqfV+IydvQJSGlFKUaBVNTQFoFkdAp/hOA9V3lnV9lChoBmgJaA9DCLPQzmkWAHBAlIaUUpRoFU1CAWgWR0Cn+FYCp3otdX2UKGgGaAloD0MILdFZZpGPbUCUhpRSlGgVTVIBaBZHQKf4zfnfVI91fZQoaAZoCWgPQwiUbeAOVAptQJSGlFKUaBVNLwFoFkdAp/miLCN0eXV9lChoBmgJaA9DCLhzYaSXdnFAlIaUUpRoFU00AWgWR0Cn+lgQ6IWQdX2UKGgGaAloD0MIjSWsjXEmckCUhpRSlGgVTT8BaBZHQKf6uxoqTbF1fZQoaAZoCWgPQwgTfT7KSB1yQJSGlFKUaBVNJwFoFkdAp/rVmWdEs3V9lChoBmgJaA9DCCuKV1nbOHJAlIaUUpRoFU1PAWgWR0Cn+tW8AaNudX2UKGgGaAloD0MIgxlTsAZtcECUhpRSlGgVTTgBaBZHQKf7392HLzR1fZQoaAZoCWgPQwghI6DCEQ1uQJSGlFKUaBVNJwFoFkdAp/wZXU6PsHV9lChoBmgJaA9DCJ1KBoCqPnJAlIaUUpRoFU0TAWgWR0Cn/CEIPbwjdX2UKGgGaAloD0MIkWRW73DVb0CUhpRSlGgVTR4BaBZHQKf8f/sE7nx1fZQoaAZoCWgPQwjhehSuR/FuQJSGlFKUaBVNQgFoFkdAp/y5dOZb6nV9lChoBmgJaA9DCNDSFWzj7XFAlIaUUpRoFU1ZAWgWR0Cn/MxDb8FZdX2UKGgGaAloD0MIq5Se6WXmcECUhpRSlGgVTYoBaBZHQKf81a/RE4N1fZQoaAZoCWgPQwjmz7cFizhwQJSGlFKUaBVNPAFoFkdAp/1ehK15SnV9lChoBmgJaA9DCP34S4u6z3JAlIaUUpRoFU1OAWgWR0Cn/fQqAjIJdX2UKGgGaAloD0MIyEPf3UrgbkCUhpRSlGgVTTYBaBZHQKf+FNHH3lF1fZQoaAZoCWgPQwiLpx5pcAhyQJSGlFKUaBVNZwFoFkdAqAhcHhS9/XV9lChoBmgJaA9DCC3RWWaRa3FAlIaUUpRoFU02AWgWR0CoCMztLL6ldX2UKGgGaAloD0MIQ6ooXiUHcUCUhpRSlGgVTSQBaBZHQKgJHvhIe5p1fZQoaAZoCWgPQwjNc0S+S+VxQJSGlFKUaBVNLQFoFkdAqAmPoNd7fHV9lChoBmgJaA9DCDV+4ZWkMGxAlIaUUpRoFU01AWgWR0CoCcTK1XvIdX2UKGgGaAloD0MIL1BSYEHacUCUhpRSlGgVTUsBaBZHQKgKIgkC3gF1fZQoaAZoCWgPQwjWVuwvu41LQJSGlFKUaBVNGwFoFkdAqAs1ZaFEiXV9lChoBmgJaA9DCIkLQKN0jWpAlIaUUpRoFU1XAWgWR0CoC2YyfthNdX2UKGgGaAloD0MIV3cstgkjckCUhpRSlGgVTU4BaBZHQKgLgL/CIk91fZQoaAZoCWgPQwjogvqWOaduQJSGlFKUaBVNUgFoFkdAqAwqROk+HXV9lChoBmgJaA9DCFmkiXeAkHBAlIaUUpRoFU00AWgWR0CoDFyG8EmqdX2UKGgGaAloD0MImn0eozzEcECUhpRSlGgVTVYBaBZHQKgMXSvTw2F1fZQoaAZoCWgPQwgmHHqLR0ZxQJSGlFKUaBVNbQFoFkdAqAxs/r0J4XV9lChoBmgJaA9DCAGloUYhLm5AlIaUUpRoFU0/AWgWR0CoDTHGCI1tdX2UKGgGaAloD0MIQx7BjVQmcECUhpRSlGgVTSsBaBZHQKgNT9ph4MZ1fZQoaAZoCWgPQwhGeHsQghhxQJSGlFKUaBVNHQFoFkdAqA2oqRU3oHV9lChoBmgJaA9DCBowSPo0dnBAlIaUUpRoFU1lAWgWR0CoDfvS+g14dX2UKGgGaAloD0MIVRaFXZSOcECUhpRSlGgVTSgBaBZHQKgOuWfseGR1fZQoaAZoCWgPQwiH4SNiyu5tQJSGlFKUaBVNWgFoFkdAqA8UTzundnV9lChoBmgJaA9DCOmY84x9w21AlIaUUpRoFU06AWgWR0CoD0U3fhuPdX2UKGgGaAloD0MI1SR4QxqrbkCUhpRSlGgVTTgBaBZHQKgPmEt/WlN1fZQoaAZoCWgPQwgSwTi49PdwQJSGlFKUaBVNHQFoFkdAqBAjah6By3V9lChoBmgJaA9DCFyOVyD6WW9AlIaUUpRoFU0iAWgWR0CoEGGjj7yhdX2UKGgGaAloD0MImxw+6URvcECUhpRSlGgVTSEBaBZHQKgQblEJBxB1fZQoaAZoCWgPQwiVC5V/7XZyQJSGlFKUaBVNoAJoFkdAqBE15le4TnV9lChoBmgJaA9DCA7ZQLrYvHJAlIaUUpRoFU0uAWgWR0CoEYPVd5Y6dX2UKGgGaAloD0MIeSRenk6ha0CUhpRSlGgVTUIBaBZHQKgRzmYBvJl1fZQoaAZoCWgPQwj8x0J0iMVwQJSGlFKUaBVNIgFoFkdAqBIdCHARCnV9lChoBmgJaA9DCN+mP/vRznFAlIaUUpRoFU0IAWgWR0CoEnWRRuTBdX2UKGgGaAloD0MIO6buym4McECUhpRSlGgVTXkBaBZHQKgSly8zyjJ1fZQoaAZoCWgPQwinJVZGI6ttQJSGlFKUaBVNPQFoFkdAqBK1MVUMonV9lChoBmgJaA9DCDzZzYx+DXFAlIaUUpRoFU1/AWgWR0CoEuIGhVU/dX2UKGgGaAloD0MIBKkUO5p4bECUhpRSlGgVTTkBaBZHQKgUD/4Irvt1fZQoaAZoCWgPQwhKsg5HlwhwQJSGlFKUaBVNTAFoFkdAqBTLD/EOy3V9lChoBmgJaA9DCN5Wem12v3FAlIaUUpRoFU0tAWgWR0CoFM5ooNNKdX2UKGgGaAloD0MIt7dbkoO4ckCUhpRSlGgVTUgBaBZHQKgU7vLHMll1fZQoaAZoCWgPQwhjesISj6RuQJSGlFKUaBVNKgFoFkdAqBVZ1s+FDnV9lChoBmgJaA9DCEQ0uoMY4HBAlIaUUpRoFU08AWgWR0CoFfO5SWJKdX2UKGgGaAloD0MIVvFG5hF5b0CUhpRSlGgVTeYBaBZHQKgWFZZB9kV1fZQoaAZoCWgPQwi0OGOYk1VvQJSGlFKUaBVNQAFoFkdAqBYTbSJCSnV9lChoBmgJaA9DCIf7yK2JUHBAlIaUUpRoFU0tAWgWR0CoForGrCFcdX2UKGgGaAloD0MIF5tWCgERcECUhpRSlGgVTTQBaBZHQKgXQ/Z/Tb51fZQoaAZoCWgPQwjGwhA5/e5xQJSGlFKUaBVNRgFoFkdAqBdLOTq0MXV9lChoBmgJaA9DCMwKRbofP29AlIaUUpRoFU0fAWgWR0CoF6mjKxLTdX2UKGgGaAloD0MIKxiV1IlJbUCUhpRSlGgVTSQBaBZHQKgX4C1Z1V51fZQoaAZoCWgPQwgEWOTXj+hvQJSGlFKUaBVNRgFoFkdAqBgzbUPQOXV9lChoBmgJaA9DCMTuO4ZHAnFAlIaUUpRoFU1ZAWgWR0CoGDBrN4Z/dX2UKGgGaAloD0MIIorJG6AScECUhpRSlGgVTTcBaBZHQKgYVJYkmhN1ZS4="
|
72 |
},
|
73 |
"ep_success_buffer": {
|
74 |
":type:": "<class 'collections.deque'>",
|
|
|
85 |
"n_epochs": 4,
|
86 |
"clip_range": {
|
87 |
":type:": "<class 'function'>",
|
88 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS90b2J5L3Byb2plY3RzL2RlZXAtcmwtY2xhc3MvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL3RvYnkvcHJvamVjdHMvZGVlcC1ybC1jbGFzcy8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
89 |
},
|
90 |
"clip_range_vf": null,
|
91 |
"target_kl": null
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:882d177fae200c822b6ce1909541d2ad34b7ccb25d9356a645b9775e79f0305a
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fee6cc160216941096985fde617c8134b2f29c609e288603a1193d414d55a349
|
3 |
size 43201
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.60.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Aug 25 23:20:18 UTC 2021
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.3.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.19.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e86aea39ad7a64a9ee20d09ed22c8dfff0e1b452f80ae0e925ff699a73522cf7
|
3 |
+
size 267479
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 254.63723977288936, "std_reward": 22.64728587425626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T23:12:08.677813"}
|