Vijay Shrivarshan Vijayaraja commited on
Commit
5c137af
·
verified ·
1 Parent(s): d0a2bbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -0
README.md CHANGED
@@ -30,8 +30,11 @@ NOTE: I used only 10 episodes for the purpose of this video. I recommend using a
30
  This project implements a Deep Q-Network (DQN) to train an agent to solve the Lunar Lander environment from OpenAI Gym. The goal is to teach the agent to safely control a lunar lander to land on the moon's surface by interacting with the environment.
31
 
32
  The project includes:
 
33
  - A fully implemented DQN algorithm.
 
34
  - Real-time visualization of the training process using Pygame.
 
35
  - Dynamic plotting of training progress using Matplotlib.
36
  ---
37
 
@@ -135,10 +138,15 @@ The project includes:
135
  You can modify the following hyperparameters in the script to customize training:
136
 
137
  **Learning Rate:** LR (default: 5e-4)
 
138
  **Bactch Size:** BATCH_SIZE (default: 64)
 
139
  **Discount Factor (Gamma):** GAMMA (default: 0.99)
 
140
  **Replay Buffer Size:** BUFFER_SIZE (default: 1e5)
 
141
  **Target Network Update Rate:** TAU (default: 1e-3)
 
142
  **Update Frequency:** UPDATE_EVERY (default: 4)
143
 
144
  ---
 
30
  This project implements a Deep Q-Network (DQN) to train an agent to solve the Lunar Lander environment from OpenAI Gym. The goal is to teach the agent to safely control a lunar lander to land on the moon's surface by interacting with the environment.
31
 
32
  The project includes:
33
+
34
  - A fully implemented DQN algorithm.
35
+
36
  - Real-time visualization of the training process using Pygame.
37
+
38
  - Dynamic plotting of training progress using Matplotlib.
39
  ---
40
 
 
138
  You can modify the following hyperparameters in the script to customize training:
139
 
140
  **Learning Rate:** LR (default: 5e-4)
141
+
142
  **Bactch Size:** BATCH_SIZE (default: 64)
143
+
144
  **Discount Factor (Gamma):** GAMMA (default: 0.99)
145
+
146
  **Replay Buffer Size:** BUFFER_SIZE (default: 1e5)
147
+
148
  **Target Network Update Rate:** TAU (default: 1e-3)
149
+
150
  **Update Frequency:** UPDATE_EVERY (default: 4)
151
 
152
  ---