model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2021-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6511305152373794
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6512434933487565
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6510175763182239
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6001624572691789
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5998564738871041
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6026065175267361
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7810548230395559
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7811451706188548
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7809644963571181
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6491659830462128
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6861271676300578
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6159833938764919
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6069402050119113
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6442441821706234
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5785382402328414
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7582056892778994
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8016194331983806
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7192527244421381
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2021-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/twitter-roberta-base-dec2021-tweetner-2020](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6511305152373794
|
94 |
+
- Precision (micro): 0.6512434933487565
|
95 |
+
- Recall (micro): 0.6510175763182239
|
96 |
+
- F1 (macro): 0.6001624572691789
|
97 |
+
- Precision (macro): 0.5998564738871041
|
98 |
+
- Recall (macro): 0.6026065175267361
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5055066079295154
|
104 |
+
- creative_work: 0.47089601046435575
|
105 |
+
- event: 0.4448705656759348
|
106 |
+
- group: 0.6124532153793807
|
107 |
+
- location: 0.6592689295039165
|
108 |
+
- person: 0.8386047352250136
|
109 |
+
- product: 0.6695371367061357
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.642462096346594, 0.6609916755115764]
|
114 |
+
- 95%: [0.6408253162283987, 0.6624122690460243]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.642462096346594, 0.6609916755115764]
|
117 |
+
- 95%: [0.6408253162283987, 0.6624122690460243]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2021-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/twitter-roberta-base-dec2021-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-06
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6554364471669218, "micro/f1_ci": {}, "micro/recall": 0.642, "micro/precision": 0.6694473409801877, "macro/f1": 0.6087510711295604, "macro/f1_ci": {}, "macro/recall": 0.5991010730868513, "macro/precision": 0.6218285105939485, "per_entity_metric": {"corporation": {"f1": 0.6108374384236452, "f1_ci": {}, "precision": 0.6138613861386139, "recall": 0.6078431372549019}, "creative_work": {"f1": 0.45751633986928103, "f1_ci": {}, "precision": 0.4430379746835443, "recall": 0.47297297297297297}, "event": {"f1": 0.40163934426229503, "f1_ci": {}, "precision": 0.4336283185840708, "recall": 0.37404580152671757}, "group": {"f1": 0.6305882352941177, "f1_ci": {}, "precision": 0.6767676767676768, "recall": 0.5903083700440529}, "location": {"f1": 0.6486486486486486, "f1_ci": {}, "precision": 0.631578947368421, "recall": 0.6666666666666666}, "person": {"f1": 0.845360824742268, "f1_ci": {}, "precision": 0.822742474916388, "recall": 0.8692579505300353}, "product": {"f1": 0.6666666666666666, "f1_ci": {}, "precision": 0.7311827956989247, "recall": 0.6126126126126126}}}, "2021.test": {"micro/f1": 0.6511305152373794, "micro/f1_ci": {"90": [0.642462096346594, 0.6609916755115764], "95": [0.6408253162283987, 0.6624122690460243]}, "micro/recall": 0.6510175763182239, "micro/precision": 0.6512434933487565, "macro/f1": 0.6001624572691789, "macro/f1_ci": {"90": [0.5901708847507007, 0.6097665575193055], "95": [0.5888565388821982, 0.6118037716085052]}, "macro/recall": 0.6026065175267361, "macro/precision": 0.5998564738871041, "per_entity_metric": {"corporation": {"f1": 0.5055066079295154, "f1_ci": {"90": [0.4795108259823577, 0.5314827844358865], "95": [0.47512205140935393, 0.5370951036754466]}, "precision": 0.5010917030567685, "recall": 0.51}, "creative_work": {"f1": 0.47089601046435575, "f1_ci": {"90": [0.4388153533937774, 0.5006399300719518], "95": [0.43339740347763767, 0.5075641025641026]}, "precision": 0.45112781954887216, "recall": 0.49247606019151846}, "event": {"f1": 0.4448705656759348, "f1_ci": {"90": [0.42021842980877167, 0.4694968412120253], "95": [0.4172649729995091, 0.47311864603972936]}, "precision": 0.47011144883485306, "recall": 0.4222020018198362}, "group": {"f1": 0.6124532153793807, "f1_ci": {"90": [0.5921133629458252, 0.6340167270391573], "95": [0.5880199080398861, 0.6392029295658258]}, "precision": 0.633356790992259, "recall": 0.5928853754940712}, "location": {"f1": 0.6592689295039165, "f1_ci": {"90": [0.6311301135283953, 0.6870809918170167], "95": [0.6245597506552384, 0.6916507734689553]}, "precision": 0.6188725490196079, "recall": 0.7053072625698324}, "person": {"f1": 0.8386047352250136, "f1_ci": {"90": [0.8283014185488987, 0.849145485613308], "95": [0.8264822934958931, 0.8509705657789103]}, "precision": 0.8224034030485643, "recall": 0.855457227138643}, "product": {"f1": 0.6695371367061357, "f1_ci": {"90": [0.6478977777349548, 0.690164987381028], "95": [0.6442664425770308, 0.6940732215736676]}, "precision": 0.7020316027088036, "recall": 0.6399176954732511}}}, "2020.test": {"micro/f1": 0.6491659830462128, "micro/f1_ci": {"90": [0.6280007201617593, 0.6678052877275604], "95": [0.6247949658941321, 0.6707378300649642]}, "micro/recall": 0.6159833938764919, "micro/precision": 0.6861271676300578, "macro/f1": 0.6069402050119113, "macro/f1_ci": {"90": [0.5829474424142466, 0.6260172030045239], "95": [0.5793951015223383, 0.6295893432029354]}, "macro/recall": 0.5785382402328414, "macro/precision": 0.6442441821706234, "per_entity_metric": {"corporation": {"f1": 0.5789473684210525, "f1_ci": {"90": [0.5207642393655372, 0.6353760012967892], "95": [0.5117579445571332, 0.6448522845546982]}, "precision": 0.582010582010582, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.5443786982248521, "f1_ci": {"90": [0.48426502074133543, 0.5977857707711539], "95": [0.4738210862619808, 0.6085017655739433]}, "precision": 0.5786163522012578, "recall": 0.5139664804469274}, "event": {"f1": 0.4457593688362919, "f1_ci": {"90": [0.39509076082965866, 0.49660721529539203], "95": [0.38427644947900896, 0.5070749170346758]}, "precision": 0.4669421487603306, "recall": 0.42641509433962266}, "group": {"f1": 0.5426944971537002, "f1_ci": {"90": [0.4868301918138208, 0.5974094446853673], "95": [0.47702845288552664, 0.6059962546294038]}, "precision": 0.6620370370370371, "recall": 0.45980707395498394}, "location": {"f1": 0.6392961876832844, "f1_ci": {"90": [0.5677690275421404, 0.7015931566978687], "95": [0.5552227017200145, 0.7174627408215195]}, "precision": 0.6193181818181818, "recall": 0.6606060606060606}, "person": {"f1": 0.8376068376068376, "f1_ci": {"90": [0.8110208478648377, 0.8603842274653795], "95": [0.8048297410286258, 0.8660754340480075]}, "precision": 0.8536585365853658, "recall": 0.8221476510067114}, "product": {"f1": 0.6598984771573604, "f1_ci": {"90": [0.6068542290474638, 0.710933659227575], "95": [0.5948648648648649, 0.7219422734128618]}, "precision": 0.7471264367816092, "recall": 0.5909090909090909}}}, "2021.test (span detection)": {"micro/f1": 0.7810548230395559, "micro/f1_ci": {}, "micro/recall": 0.7809644963571181, "micro/precision": 0.7811451706188548, "macro/f1": 0.7810548230395559, "macro/f1_ci": {}, "macro/recall": 0.7809644963571181, "macro/precision": 0.7811451706188548}, "2020.test (span detection)": {"micro/f1": 0.7582056892778994, "micro/f1_ci": {}, "micro/recall": 0.7192527244421381, "micro/precision": 0.8016194331983806, "macro/f1": 0.7582056892778994, "macro/f1_ci": {}, "macro/recall": 0.7192527244421381, "macro/precision": 0.8016194331983806}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6491659830462128, "micro/f1_ci": {"90": [0.6280007201617593, 0.6678052877275604], "95": [0.6247949658941321, 0.6707378300649642]}, "micro/recall": 0.6159833938764919, "micro/precision": 0.6861271676300578, "macro/f1": 0.6069402050119113, "macro/f1_ci": {"90": [0.5829474424142466, 0.6260172030045239], "95": [0.5793951015223383, 0.6295893432029354]}, "macro/recall": 0.5785382402328414, "macro/precision": 0.6442441821706234, "per_entity_metric": {"corporation": {"f1": 0.5789473684210525, "f1_ci": {"90": [0.5207642393655372, 0.6353760012967892], "95": [0.5117579445571332, 0.6448522845546982]}, "precision": 0.582010582010582, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.5443786982248521, "f1_ci": {"90": [0.48426502074133543, 0.5977857707711539], "95": [0.4738210862619808, 0.6085017655739433]}, "precision": 0.5786163522012578, "recall": 0.5139664804469274}, "event": {"f1": 0.4457593688362919, "f1_ci": {"90": [0.39509076082965866, 0.49660721529539203], "95": [0.38427644947900896, 0.5070749170346758]}, "precision": 0.4669421487603306, "recall": 0.42641509433962266}, "group": {"f1": 0.5426944971537002, "f1_ci": {"90": [0.4868301918138208, 0.5974094446853673], "95": [0.47702845288552664, 0.6059962546294038]}, "precision": 0.6620370370370371, "recall": 0.45980707395498394}, "location": {"f1": 0.6392961876832844, "f1_ci": {"90": [0.5677690275421404, 0.7015931566978687], "95": [0.5552227017200145, 0.7174627408215195]}, "precision": 0.6193181818181818, "recall": 0.6606060606060606}, "person": {"f1": 0.8376068376068376, "f1_ci": {"90": [0.8110208478648377, 0.8603842274653795], "95": [0.8048297410286258, 0.8660754340480075]}, "precision": 0.8536585365853658, "recall": 0.8221476510067114}, "product": {"f1": 0.6598984771573604, "f1_ci": {"90": [0.6068542290474638, 0.710933659227575], "95": [0.5948648648648649, 0.7219422734128618]}, "precision": 0.7471264367816092, "recall": 0.5909090909090909}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6511305152373794, "micro/f1_ci": {"90": [0.642462096346594, 0.6609916755115764], "95": [0.6408253162283987, 0.6624122690460243]}, "micro/recall": 0.6510175763182239, "micro/precision": 0.6512434933487565, "macro/f1": 0.6001624572691789, "macro/f1_ci": {"90": [0.5901708847507007, 0.6097665575193055], "95": [0.5888565388821982, 0.6118037716085052]}, "macro/recall": 0.6026065175267361, "macro/precision": 0.5998564738871041, "per_entity_metric": {"corporation": {"f1": 0.5055066079295154, "f1_ci": {"90": [0.4795108259823577, 0.5314827844358865], "95": [0.47512205140935393, 0.5370951036754466]}, "precision": 0.5010917030567685, "recall": 0.51}, "creative_work": {"f1": 0.47089601046435575, "f1_ci": {"90": [0.4388153533937774, 0.5006399300719518], "95": [0.43339740347763767, 0.5075641025641026]}, "precision": 0.45112781954887216, "recall": 0.49247606019151846}, "event": {"f1": 0.4448705656759348, "f1_ci": {"90": [0.42021842980877167, 0.4694968412120253], "95": [0.4172649729995091, 0.47311864603972936]}, "precision": 0.47011144883485306, "recall": 0.4222020018198362}, "group": {"f1": 0.6124532153793807, "f1_ci": {"90": [0.5921133629458252, 0.6340167270391573], "95": [0.5880199080398861, 0.6392029295658258]}, "precision": 0.633356790992259, "recall": 0.5928853754940712}, "location": {"f1": 0.6592689295039165, "f1_ci": {"90": [0.6311301135283953, 0.6870809918170167], "95": [0.6245597506552384, 0.6916507734689553]}, "precision": 0.6188725490196079, "recall": 0.7053072625698324}, "person": {"f1": 0.8386047352250136, "f1_ci": {"90": [0.8283014185488987, 0.849145485613308], "95": [0.8264822934958931, 0.8509705657789103]}, "precision": 0.8224034030485643, "recall": 0.855457227138643}, "product": {"f1": 0.6695371367061357, "f1_ci": {"90": [0.6478977777349548, 0.690164987381028], "95": [0.6442664425770308, 0.6940732215736676]}, "precision": 0.7020316027088036, "recall": 0.6399176954732511}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7582056892778994, "micro/f1_ci": {}, "micro/recall": 0.7192527244421381, "micro/precision": 0.8016194331983806, "macro/f1": 0.7582056892778994, "macro/f1_ci": {}, "macro/recall": 0.7192527244421381, "macro/precision": 0.8016194331983806}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7810548230395559, "micro/f1_ci": {}, "micro/recall": 0.7809644963571181, "micro/precision": 0.7811451706188548, "macro/f1": 0.7810548230395559, "macro/f1_ci": {}, "macro/recall": 0.7809644963571181, "macro/precision": 0.7811451706188548}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/twitter-roberta-base-dec2021-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-06, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|