model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6526255707762557
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6443868349864743
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6610777058279371
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6069741859166096
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5990170780704488
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6172166732079049
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7868028997088875
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7768259693417493
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7970394356424193
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6544474393530997
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.680874929893438
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6299948105864037
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6138692748869267
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.639860659918586
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5920548821120473
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7586950660555406
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7895622895622896
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7301504929942917
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6526255707762557
|
94 |
+
- Precision (micro): 0.6443868349864743
|
95 |
+
- Recall (micro): 0.6610777058279371
|
96 |
+
- F1 (macro): 0.6069741859166096
|
97 |
+
- Precision (macro): 0.5990170780704488
|
98 |
+
- Recall (macro): 0.6172166732079049
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5153234960272418
|
104 |
+
- creative_work: 0.47595252966895685
|
105 |
+
- event: 0.46693657219973006
|
106 |
+
- group: 0.60928
|
107 |
+
- location: 0.6688567674113008
|
108 |
+
- person: 0.8386501936197677
|
109 |
+
- product: 0.6738197424892703
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6437691693006731, 0.6623739817960804]
|
114 |
+
- 95%: [0.6423289413183693, 0.6642699129749126]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6437691693006731, 0.6623739817960804]
|
117 |
+
- 95%: [0.6423289413183693, 0.6642699129749126]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-dec2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6425339366515838, "micro/f1_ci": {}, "micro/recall": 0.639, "micro/precision": 0.6461071789686552, "macro/f1": 0.5989569296686776, "macro/f1_ci": {}, "macro/recall": 0.5963672516044548, "macro/precision": 0.604043351645594, "per_entity_metric": {"corporation": {"f1": 0.6082474226804123, "f1_ci": {}, "precision": 0.6413043478260869, "recall": 0.5784313725490197}, "creative_work": {"f1": 0.4171779141104294, "f1_ci": {}, "precision": 0.38202247191011235, "recall": 0.4594594594594595}, "event": {"f1": 0.4251968503937008, "f1_ci": {}, "precision": 0.43902439024390244, "recall": 0.4122137404580153}, "group": {"f1": 0.6236080178173719, "f1_ci": {}, "precision": 0.6306306306306306, "recall": 0.6167400881057269}, "location": {"f1": 0.6486486486486486, "f1_ci": {}, "precision": 0.631578947368421, "recall": 0.6666666666666666}, "person": {"f1": 0.8286713286713286, "f1_ci": {}, "precision": 0.8200692041522492, "recall": 0.8374558303886925}, "product": {"f1": 0.6411483253588517, "f1_ci": {}, "precision": 0.6836734693877551, "recall": 0.6036036036036037}}}, "2021.test": {"micro/f1": 0.6526255707762557, "micro/f1_ci": {"90": [0.6437691693006731, 0.6623739817960804], "95": [0.6423289413183693, 0.6642699129749126]}, "micro/recall": 0.6610777058279371, "micro/precision": 0.6443868349864743, "macro/f1": 0.6069741859166096, "macro/f1_ci": {"90": [0.5969405931574795, 0.6169180905698453], "95": [0.5951882145650105, 0.6186261415221893]}, "macro/recall": 0.6172166732079049, "macro/precision": 0.5990170780704488, "per_entity_metric": {"corporation": {"f1": 0.5153234960272418, "f1_ci": {"90": [0.48979124830710313, 0.5416453967401038], "95": [0.4846763606289239, 0.5484286848323734]}, "precision": 0.5266821345707656, "recall": 0.5044444444444445}, "creative_work": {"f1": 0.47595252966895685, "f1_ci": {"90": [0.4450136547127212, 0.5060689375403542], "95": [0.4406451100516083, 0.5104259293002914]}, "precision": 0.4379310344827586, "recall": 0.521203830369357}, "event": {"f1": 0.46693657219973006, "f1_ci": {"90": [0.4433278746436782, 0.4904300531124057], "95": [0.43908609101602464, 0.4948272743714957]}, "precision": 0.46174377224199287, "recall": 0.47224749772520475}, "group": {"f1": 0.60928, "f1_ci": {"90": [0.58905038898122, 0.6306565075497464], "95": [0.5857818627333528, 0.6337814610823933]}, "precision": 0.5924082140634723, "recall": 0.6271409749670619}, "location": {"f1": 0.6688567674113008, "f1_ci": {"90": [0.6411061399494976, 0.6963439016627287], "95": [0.6362671616964405, 0.7015416924027178]}, "precision": 0.6315136476426799, "recall": 0.7108938547486033}, "person": {"f1": 0.8386501936197677, "f1_ci": {"90": [0.8280056803440087, 0.8493018351616476], "95": [0.8263492236736317, 0.8510733824274442]}, "precision": 0.8388048690520103, "recall": 0.838495575221239}, "product": {"f1": 0.6738197424892703, "f1_ci": {"90": [0.65218196906801, 0.6956179563127771], "95": [0.6475943730141744, 0.6984190719050953]}, "precision": 0.7040358744394619, "recall": 0.6460905349794238}}}, "2020.test": {"micro/f1": 0.6544474393530997, "micro/f1_ci": {"90": [0.6328497699075983, 0.6728044842641441], "95": [0.6291867061094695, 0.6760719350870426]}, "micro/recall": 0.6299948105864037, "micro/precision": 0.680874929893438, "macro/f1": 0.6138692748869267, "macro/f1_ci": {"90": [0.590175490065613, 0.6330937411191636], "95": [0.5865029961531653, 0.6369957089246945]}, "macro/recall": 0.5920548821120473, "macro/precision": 0.639860659918586, "per_entity_metric": {"corporation": {"f1": 0.5675675675675675, "f1_ci": {"90": [0.504295559145109, 0.6253295812135242], "95": [0.49554695181907565, 0.6339265479676438]}, "precision": 0.5865921787709497, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.550561797752809, "f1_ci": {"90": [0.4934960481877372, 0.6020524118738404], "95": [0.4848118648722878, 0.6132814376651454]}, "precision": 0.5536723163841808, "recall": 0.547486033519553}, "event": {"f1": 0.462406015037594, "f1_ci": {"90": [0.4108194750550992, 0.5124638081746882], "95": [0.401291157260602, 0.5232811578406383]}, "precision": 0.4606741573033708, "recall": 0.4641509433962264}, "group": {"f1": 0.5551601423487544, "f1_ci": {"90": [0.5016589792385684, 0.6076091861210725], "95": [0.4912804447531413, 0.617329390460492]}, "precision": 0.6215139442231076, "recall": 0.5016077170418006}, "location": {"f1": 0.6426426426426426, "f1_ci": {"90": [0.5713889988128216, 0.7035890939799735], "95": [0.5591985171261487, 0.7202876984126986]}, "precision": 0.6369047619047619, "recall": 0.6484848484848484}, "person": {"f1": 0.8487467588591183, "f1_ci": {"90": [0.8219659833630422, 0.8716422802714063], "95": [0.8163611658762722, 0.8762541806020068]}, "precision": 0.875222816399287, "recall": 0.8238255033557047}, "product": {"f1": 0.67, "f1_ci": {"90": [0.6153665583243049, 0.7173996017258546], "95": [0.6060281385281385, 0.7304367192795584]}, "precision": 0.7444444444444445, "recall": 0.6090909090909091}}}, "2021.test (span detection)": {"micro/f1": 0.7868028997088875, "micro/f1_ci": {}, "micro/recall": 0.7970394356424193, "micro/precision": 0.7768259693417493, "macro/f1": 0.7868028997088875, "macro/f1_ci": {}, "macro/recall": 0.7970394356424193, "macro/precision": 0.7768259693417493}, "2020.test (span detection)": {"micro/f1": 0.7586950660555406, "micro/f1_ci": {}, "micro/recall": 0.7301504929942917, "micro/precision": 0.7895622895622896, "macro/f1": 0.7586950660555406, "macro/f1_ci": {}, "macro/recall": 0.7301504929942917, "macro/precision": 0.7895622895622896}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6544474393530997, "micro/f1_ci": {"90": [0.6328497699075983, 0.6728044842641441], "95": [0.6291867061094695, 0.6760719350870426]}, "micro/recall": 0.6299948105864037, "micro/precision": 0.680874929893438, "macro/f1": 0.6138692748869267, "macro/f1_ci": {"90": [0.590175490065613, 0.6330937411191636], "95": [0.5865029961531653, 0.6369957089246945]}, "macro/recall": 0.5920548821120473, "macro/precision": 0.639860659918586, "per_entity_metric": {"corporation": {"f1": 0.5675675675675675, "f1_ci": {"90": [0.504295559145109, 0.6253295812135242], "95": [0.49554695181907565, 0.6339265479676438]}, "precision": 0.5865921787709497, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.550561797752809, "f1_ci": {"90": [0.4934960481877372, 0.6020524118738404], "95": [0.4848118648722878, 0.6132814376651454]}, "precision": 0.5536723163841808, "recall": 0.547486033519553}, "event": {"f1": 0.462406015037594, "f1_ci": {"90": [0.4108194750550992, 0.5124638081746882], "95": [0.401291157260602, 0.5232811578406383]}, "precision": 0.4606741573033708, "recall": 0.4641509433962264}, "group": {"f1": 0.5551601423487544, "f1_ci": {"90": [0.5016589792385684, 0.6076091861210725], "95": [0.4912804447531413, 0.617329390460492]}, "precision": 0.6215139442231076, "recall": 0.5016077170418006}, "location": {"f1": 0.6426426426426426, "f1_ci": {"90": [0.5713889988128216, 0.7035890939799735], "95": [0.5591985171261487, 0.7202876984126986]}, "precision": 0.6369047619047619, "recall": 0.6484848484848484}, "person": {"f1": 0.8487467588591183, "f1_ci": {"90": [0.8219659833630422, 0.8716422802714063], "95": [0.8163611658762722, 0.8762541806020068]}, "precision": 0.875222816399287, "recall": 0.8238255033557047}, "product": {"f1": 0.67, "f1_ci": {"90": [0.6153665583243049, 0.7173996017258546], "95": [0.6060281385281385, 0.7304367192795584]}, "precision": 0.7444444444444445, "recall": 0.6090909090909091}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6526255707762557, "micro/f1_ci": {"90": [0.6437691693006731, 0.6623739817960804], "95": [0.6423289413183693, 0.6642699129749126]}, "micro/recall": 0.6610777058279371, "micro/precision": 0.6443868349864743, "macro/f1": 0.6069741859166096, "macro/f1_ci": {"90": [0.5969405931574795, 0.6169180905698453], "95": [0.5951882145650105, 0.6186261415221893]}, "macro/recall": 0.6172166732079049, "macro/precision": 0.5990170780704488, "per_entity_metric": {"corporation": {"f1": 0.5153234960272418, "f1_ci": {"90": [0.48979124830710313, 0.5416453967401038], "95": [0.4846763606289239, 0.5484286848323734]}, "precision": 0.5266821345707656, "recall": 0.5044444444444445}, "creative_work": {"f1": 0.47595252966895685, "f1_ci": {"90": [0.4450136547127212, 0.5060689375403542], "95": [0.4406451100516083, 0.5104259293002914]}, "precision": 0.4379310344827586, "recall": 0.521203830369357}, "event": {"f1": 0.46693657219973006, "f1_ci": {"90": [0.4433278746436782, 0.4904300531124057], "95": [0.43908609101602464, 0.4948272743714957]}, "precision": 0.46174377224199287, "recall": 0.47224749772520475}, "group": {"f1": 0.60928, "f1_ci": {"90": [0.58905038898122, 0.6306565075497464], "95": [0.5857818627333528, 0.6337814610823933]}, "precision": 0.5924082140634723, "recall": 0.6271409749670619}, "location": {"f1": 0.6688567674113008, "f1_ci": {"90": [0.6411061399494976, 0.6963439016627287], "95": [0.6362671616964405, 0.7015416924027178]}, "precision": 0.6315136476426799, "recall": 0.7108938547486033}, "person": {"f1": 0.8386501936197677, "f1_ci": {"90": [0.8280056803440087, 0.8493018351616476], "95": [0.8263492236736317, 0.8510733824274442]}, "precision": 0.8388048690520103, "recall": 0.838495575221239}, "product": {"f1": 0.6738197424892703, "f1_ci": {"90": [0.65218196906801, 0.6956179563127771], "95": [0.6475943730141744, 0.6984190719050953]}, "precision": 0.7040358744394619, "recall": 0.6460905349794238}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7586950660555406, "micro/f1_ci": {}, "micro/recall": 0.7301504929942917, "micro/precision": 0.7895622895622896, "macro/f1": 0.7586950660555406, "macro/f1_ci": {}, "macro/recall": 0.7301504929942917, "macro/precision": 0.7895622895622896}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7868028997088875, "micro/f1_ci": {}, "micro/recall": 0.7970394356424193, "micro/precision": 0.7768259693417493, "macro/f1": 0.7868028997088875, "macro/f1_ci": {}, "macro/recall": 0.7970394356424193, "macro/precision": 0.7768259693417493}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-dec2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|