asahi417 commited on
Commit
7c73387
·
1 Parent(s): 7a5278e

model update

Browse files
README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - tner/tweetner7
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/twitter-roberta-base-2019-90m-tweetner7-random
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: tner/tweetner7/test_2021
16
+ type: tner/tweetner7/test_2021
17
+ args: tner/tweetner7/test_2021
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.6329255975760296
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.6147809025506867
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.6521739130434783
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.5849737353611323
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.5655720751091778
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.6073811457896877
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.7735817294203468
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.7513625463265751
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.7971550826876374
46
+ - task:
47
+ name: Token Classification
48
+ type: token-classification
49
+ dataset:
50
+ name: tner/tweetner7/test_2020
51
+ type: tner/tweetner7/test_2020
52
+ args: tner/tweetner7/test_2020
53
+ metrics:
54
+ - name: F1
55
+ type: f1
56
+ value: 0.6428571428571428
57
+ - name: Precision
58
+ type: precision
59
+ value: 0.666110183639399
60
+ - name: Recall
61
+ type: recall
62
+ value: 0.6211728074727556
63
+ - name: F1 (macro)
64
+ type: f1_macro
65
+ value: 0.6067120703105228
66
+ - name: Precision (macro)
67
+ type: precision_macro
68
+ value: 0.6269481984991956
69
+ - name: Recall (macro)
70
+ type: recall_macro
71
+ value: 0.5890178249768797
72
+ - name: F1 (entity span)
73
+ type: f1_entity_span
74
+ value: 0.7620837808807734
75
+ - name: Precision (entity span)
76
+ type: precision_entity_span
77
+ value: 0.7896494156928213
78
+ - name: Recall (entity span)
79
+ type: recall_entity_span
80
+ value: 0.736377789309808
81
+
82
+ pipeline_tag: token-classification
83
+ widget:
84
+ - text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
85
+ example_title: "NER Example 1"
86
+ ---
87
+ # tner/twitter-roberta-base-2019-90m-tweetner7-random
88
+
89
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on the
90
+ [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
91
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
92
+ for more detail). It achieves the following results on the test set of 2021:
93
+ - F1 (micro): 0.6329255975760296
94
+ - Precision (micro): 0.6147809025506867
95
+ - Recall (micro): 0.6521739130434783
96
+ - F1 (macro): 0.5849737353611323
97
+ - Precision (macro): 0.5655720751091778
98
+ - Recall (macro): 0.6073811457896877
99
+
100
+
101
+
102
+ The per-entity breakdown of the F1 score on the test set are below:
103
+ - corporation: 0.5055837563451777
104
+ - creative_work: 0.41676942046855736
105
+ - event: 0.45696539485359355
106
+ - group: 0.599078341013825
107
+ - location: 0.6480218281036835
108
+ - person: 0.8302235359320156
109
+ - product: 0.6381738708110735
110
+
111
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
112
+ - F1 (micro):
113
+ - 90%: [0.6241107966406728, 0.6420422564843195]
114
+ - 95%: [0.6227081381578177, 0.6435080538043557]
115
+ - F1 (macro):
116
+ - 90%: [0.6241107966406728, 0.6420422564843195]
117
+ - 95%: [0.6227081381578177, 0.6435080538043557]
118
+
119
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random/raw/main/eval/metric.json)
120
+ and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random/raw/main/eval/metric_span.json).
121
+
122
+ ### Usage
123
+ This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
124
+ ```shell
125
+ pip install tner
126
+ ```
127
+ and activate model as below.
128
+ ```python
129
+ from tner import TransformersNER
130
+ model = TransformersNER("tner/twitter-roberta-base-2019-90m-tweetner7-random")
131
+ model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
132
+ ```
133
+ It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
134
+
135
+ ### Training hyperparameters
136
+
137
+ The following hyperparameters were used during training:
138
+ - dataset: ['tner/tweetner7']
139
+ - dataset_split: train_random
140
+ - dataset_name: None
141
+ - local_dataset: None
142
+ - model: cardiffnlp/twitter-roberta-base-2019-90m
143
+ - crf: True
144
+ - max_length: 128
145
+ - epoch: 30
146
+ - batch_size: 32
147
+ - lr: 0.0001
148
+ - random_seed: 0
149
+ - gradient_accumulation_steps: 1
150
+ - weight_decay: 1e-07
151
+ - lr_warmup_step_ratio: 0.3
152
+ - max_grad_norm: 1
153
+
154
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random/raw/main/trainer_config.json).
155
+
156
+ ### Reference
157
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
158
+
159
+ ```
160
+
161
+ @inproceedings{ushio-camacho-collados-2021-ner,
162
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
163
+ author = "Ushio, Asahi and
164
+ Camacho-Collados, Jose",
165
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
166
+ month = apr,
167
+ year = "2021",
168
+ address = "Online",
169
+ publisher = "Association for Computational Linguistics",
170
+ url = "https://aclanthology.org/2021.eacl-demos.7",
171
+ doi = "10.18653/v1/2021.eacl-demos.7",
172
+ pages = "53--62",
173
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
174
+ }
175
+
176
+ ```
eval/metric.json DELETED
@@ -1 +0,0 @@
1
- {"random.dev": {"micro/f1": 0.6430903155603918, "micro/f1_ci": {}, "micro/recall": 0.6310731446876668, "micro/precision": 0.6555740432612313, "macro/f1": 0.5957476328680672, "macro/f1_ci": {}, "macro/recall": 0.5839083840160486, "macro/precision": 0.6084750980060624, "per_entity_metric": {"corporation": {"f1": 0.5758354755784061, "f1_ci": {}, "precision": 0.5714285714285714, "recall": 0.5803108808290155}, "creative_work": {"f1": 0.44236760124610586, "f1_ci": {}, "precision": 0.44654088050314467, "recall": 0.4382716049382716}, "event": {"f1": 0.391578947368421, "f1_ci": {}, "precision": 0.4043478260869565, "recall": 0.3795918367346939}, "group": {"f1": 0.622093023255814, "f1_ci": {}, "precision": 0.6257309941520468, "recall": 0.6184971098265896}, "location": {"f1": 0.6346153846153847, "f1_ci": {}, "precision": 0.6644295302013423, "recall": 0.6073619631901841}, "person": {"f1": 0.8595988538681949, "f1_ci": {}, "precision": 0.8754863813229572, "recall": 0.8442776735459663}, "product": {"f1": 0.6441441441441441, "f1_ci": {}, "precision": 0.6713615023474179, "recall": 0.6190476190476191}}}, "2021.test": {"micro/f1": 0.6329255975760296, "micro/f1_ci": {"90": [0.6241107966406728, 0.6420422564843195], "95": [0.6227081381578177, 0.6435080538043557]}, "micro/recall": 0.6521739130434783, "micro/precision": 0.6147809025506867, "macro/f1": 0.5849737353611323, "macro/f1_ci": {"90": [0.5763837020363822, 0.5947111988264823], "95": [0.5742937353061618, 0.5962661166656056]}, "macro/recall": 0.6073811457896877, "macro/precision": 0.5655720751091778, "per_entity_metric": {"corporation": {"f1": 0.5055837563451777, "f1_ci": {"90": [0.48112880503144656, 0.5305129060228105], "95": [0.47521529459960105, 0.5351315949731495]}, "precision": 0.4654205607476635, "recall": 0.5533333333333333}, "creative_work": {"f1": 0.41676942046855736, "f1_ci": {"90": [0.38737414150104255, 0.4471280364372469], "95": [0.381117185936746, 0.4518568526740165]}, "precision": 0.3793490460157127, "recall": 0.46238030095759236}, "event": {"f1": 0.45696539485359355, "f1_ci": {"90": [0.43451377299237326, 0.48098433064395635], "95": [0.4312793014907832, 0.48593287418465386]}, "precision": 0.4458874458874459, "recall": 0.46860782529572337}, "group": {"f1": 0.599078341013825, "f1_ci": {"90": [0.5799007693202035, 0.6205978336770757], "95": [0.5763590616997798, 0.6235043929757479]}, "precision": 0.5986842105263158, "recall": 0.5994729907773386}, "location": {"f1": 0.6480218281036835, "f1_ci": {"90": [0.6205056231580423, 0.6749297649471397], "95": [0.6175627543763568, 0.6813266130099813]}, "precision": 0.6333333333333333, "recall": 0.6634078212290503}, "person": {"f1": 0.8302235359320156, "f1_ci": {"90": [0.8202314881837767, 0.8410008455396478], "95": [0.8177612076669796, 0.8430586034166829]}, "precision": 0.8319141058867087, "recall": 0.8285398230088495}, "product": {"f1": 0.6381738708110735, "f1_ci": {"90": [0.6169357700291059, 0.6600499792631749], "95": [0.6131003018520063, 0.664773006102066]}, "precision": 0.6044158233670653, "recall": 0.6759259259259259}}}, "2020.test": {"micro/f1": 0.6428571428571428, "micro/f1_ci": {"90": [0.6218825133568143, 0.6608444099298781], "95": [0.6185707589214373, 0.665192796014874]}, "micro/recall": 0.6211728074727556, "micro/precision": 0.666110183639399, "macro/f1": 0.6067120703105228, "macro/f1_ci": {"90": [0.5847083370483181, 0.6258826342571657], "95": [0.5815028092972286, 0.6293428524288749]}, "macro/recall": 0.5890178249768797, "macro/precision": 0.6269481984991956, "per_entity_metric": {"corporation": {"f1": 0.5684754521963824, "f1_ci": {"90": [0.51461143224149, 0.6213723432170033], "95": [0.5048933935276239, 0.6302796758302875]}, "precision": 0.5612244897959183, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.4887640449438202, "f1_ci": {"90": [0.42513867449237497, 0.5449838989348527], "95": [0.4129533747193237, 0.5546218487394958]}, "precision": 0.4915254237288136, "recall": 0.4860335195530726}, "event": {"f1": 0.45364891518737677, "f1_ci": {"90": [0.4032586558044806, 0.50105253276257], "95": [0.3941893490609532, 0.5113654082404082]}, "precision": 0.47520661157024796, "recall": 0.4339622641509434}, "group": {"f1": 0.5502645502645503, "f1_ci": {"90": [0.49639891028353794, 0.5996135198323417], "95": [0.4862892256873603, 0.610242001349384]}, "precision": 0.609375, "recall": 0.5016077170418006}, "location": {"f1": 0.7174603174603175, "f1_ci": {"90": [0.66, 0.7673751141712922], "95": [0.6483867450304767, 0.7759562841530054]}, "precision": 0.7533333333333333, "recall": 0.6848484848484848}, "person": {"f1": 0.8229166666666667, "f1_ci": {"90": [0.7947803203661327, 0.8469858791026068], "95": [0.7899859677143346, 0.8515427066348928]}, "precision": 0.8525179856115108, "recall": 0.7953020134228188}, "product": {"f1": 0.6454545454545455, "f1_ci": {"90": [0.6, 0.687823236296879], "95": [0.590903203014602, 0.695656930834364]}, "precision": 0.6454545454545455, "recall": 0.6454545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7735817294203468, "micro/f1_ci": {}, "micro/recall": 0.7971550826876374, "micro/precision": 0.7513625463265751, "macro/f1": 0.7735817294203468, "macro/f1_ci": {}, "macro/recall": 0.7971550826876374, "macro/precision": 0.7513625463265751}, "2020.test (span detection)": {"micro/f1": 0.7620837808807734, "micro/f1_ci": {}, "micro/recall": 0.736377789309808, "micro/precision": 0.7896494156928213, "macro/f1": 0.7620837808807734, "macro/f1_ci": {}, "macro/recall": 0.736377789309808, "macro/precision": 0.7896494156928213}}
 
 
eval/metric.test_2020.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.6428571428571428, "micro/f1_ci": {"90": [0.6218825133568143, 0.6608444099298781], "95": [0.6185707589214373, 0.665192796014874]}, "micro/recall": 0.6211728074727556, "micro/precision": 0.666110183639399, "macro/f1": 0.6067120703105228, "macro/f1_ci": {"90": [0.5847083370483181, 0.6258826342571657], "95": [0.5815028092972286, 0.6293428524288749]}, "macro/recall": 0.5890178249768797, "macro/precision": 0.6269481984991956, "per_entity_metric": {"corporation": {"f1": 0.5684754521963824, "f1_ci": {"90": [0.51461143224149, 0.6213723432170033], "95": [0.5048933935276239, 0.6302796758302875]}, "precision": 0.5612244897959183, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.4887640449438202, "f1_ci": {"90": [0.42513867449237497, 0.5449838989348527], "95": [0.4129533747193237, 0.5546218487394958]}, "precision": 0.4915254237288136, "recall": 0.4860335195530726}, "event": {"f1": 0.45364891518737677, "f1_ci": {"90": [0.4032586558044806, 0.50105253276257], "95": [0.3941893490609532, 0.5113654082404082]}, "precision": 0.47520661157024796, "recall": 0.4339622641509434}, "group": {"f1": 0.5502645502645503, "f1_ci": {"90": [0.49639891028353794, 0.5996135198323417], "95": [0.4862892256873603, 0.610242001349384]}, "precision": 0.609375, "recall": 0.5016077170418006}, "location": {"f1": 0.7174603174603175, "f1_ci": {"90": [0.66, 0.7673751141712922], "95": [0.6483867450304767, 0.7759562841530054]}, "precision": 0.7533333333333333, "recall": 0.6848484848484848}, "person": {"f1": 0.8229166666666667, "f1_ci": {"90": [0.7947803203661327, 0.8469858791026068], "95": [0.7899859677143346, 0.8515427066348928]}, "precision": 0.8525179856115108, "recall": 0.7953020134228188}, "product": {"f1": 0.6454545454545455, "f1_ci": {"90": [0.6, 0.687823236296879], "95": [0.590903203014602, 0.695656930834364]}, "precision": 0.6454545454545455, "recall": 0.6454545454545455}}}
eval/metric.test_2021.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.6329255975760296, "micro/f1_ci": {"90": [0.6241107966406728, 0.6420422564843195], "95": [0.6227081381578177, 0.6435080538043557]}, "micro/recall": 0.6521739130434783, "micro/precision": 0.6147809025506867, "macro/f1": 0.5849737353611323, "macro/f1_ci": {"90": [0.5763837020363822, 0.5947111988264823], "95": [0.5742937353061618, 0.5962661166656056]}, "macro/recall": 0.6073811457896877, "macro/precision": 0.5655720751091778, "per_entity_metric": {"corporation": {"f1": 0.5055837563451777, "f1_ci": {"90": [0.48112880503144656, 0.5305129060228105], "95": [0.47521529459960105, 0.5351315949731495]}, "precision": 0.4654205607476635, "recall": 0.5533333333333333}, "creative_work": {"f1": 0.41676942046855736, "f1_ci": {"90": [0.38737414150104255, 0.4471280364372469], "95": [0.381117185936746, 0.4518568526740165]}, "precision": 0.3793490460157127, "recall": 0.46238030095759236}, "event": {"f1": 0.45696539485359355, "f1_ci": {"90": [0.43451377299237326, 0.48098433064395635], "95": [0.4312793014907832, 0.48593287418465386]}, "precision": 0.4458874458874459, "recall": 0.46860782529572337}, "group": {"f1": 0.599078341013825, "f1_ci": {"90": [0.5799007693202035, 0.6205978336770757], "95": [0.5763590616997798, 0.6235043929757479]}, "precision": 0.5986842105263158, "recall": 0.5994729907773386}, "location": {"f1": 0.6480218281036835, "f1_ci": {"90": [0.6205056231580423, 0.6749297649471397], "95": [0.6175627543763568, 0.6813266130099813]}, "precision": 0.6333333333333333, "recall": 0.6634078212290503}, "person": {"f1": 0.8302235359320156, "f1_ci": {"90": [0.8202314881837767, 0.8410008455396478], "95": [0.8177612076669796, 0.8430586034166829]}, "precision": 0.8319141058867087, "recall": 0.8285398230088495}, "product": {"f1": 0.6381738708110735, "f1_ci": {"90": [0.6169357700291059, 0.6600499792631749], "95": [0.6131003018520063, 0.664773006102066]}, "precision": 0.6044158233670653, "recall": 0.6759259259259259}}}
eval/metric_span.test_2020.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7620837808807734, "micro/f1_ci": {}, "micro/recall": 0.736377789309808, "micro/precision": 0.7896494156928213, "macro/f1": 0.7620837808807734, "macro/f1_ci": {}, "macro/recall": 0.736377789309808, "macro/precision": 0.7896494156928213}
eval/metric_span.test_2021.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.7735817294203468, "micro/f1_ci": {}, "micro/recall": 0.7971550826876374, "micro/precision": 0.7513625463265751, "macro/f1": 0.7735817294203468, "macro/f1_ci": {}, "macro/recall": 0.7971550826876374, "macro/precision": 0.7513625463265751}
eval/prediction.2020.test.json DELETED
The diff for this file is too large to render. See raw diff
 
eval/prediction.2021.test.json DELETED
The diff for this file is too large to render. See raw diff
 
eval/prediction.random.dev.json DELETED
The diff for this file is too large to render. See raw diff
 
trainer_config.json CHANGED
@@ -1 +1 @@
1
- {"data_split": "random.train", "model": "cardiffnlp/twitter-roberta-base-2019-90m", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
 
1
+ {"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-2019-90m", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}