model update
Browse files- README.md +168 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-2020-selflabel2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7
|
16 |
+
type: tner/tweetner7
|
17 |
+
args: tner/tweetner7
|
18 |
+
metrics:
|
19 |
+
- name: F1 (test_2021)
|
20 |
+
type: f1
|
21 |
+
value: 0.644817329816488
|
22 |
+
- name: Precision (test_2021)
|
23 |
+
type: precision
|
24 |
+
value: 0.6264311416421328
|
25 |
+
- name: Recall (test_2021)
|
26 |
+
type: recall
|
27 |
+
value: 0.6643154486586494
|
28 |
+
- name: Macro F1 (test_2021)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5941147287547678
|
31 |
+
- name: Macro Precision (test_2021)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5756979462999651
|
34 |
+
- name: Macro Recall (test_2021)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6198566504961354
|
37 |
+
- name: Entity Span F1 (test_2021)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7835896284655965
|
40 |
+
- name: Entity Span Precision (test_2020)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7612037945698397
|
43 |
+
- name: Entity Span Recall (test_2021)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8073320226668209
|
46 |
+
- name: F1 (test_2020)
|
47 |
+
type: f1
|
48 |
+
value: 0.6548100242522231
|
49 |
+
- name: Precision (test_2020)
|
50 |
+
type: precision
|
51 |
+
value: 0.6810538116591929
|
52 |
+
- name: Recall (test_2020)
|
53 |
+
type: recall
|
54 |
+
value: 0.6305137519460301
|
55 |
+
- name: Macro F1 (test_2020)
|
56 |
+
type: f1_macro
|
57 |
+
value: 0.6141867781768393
|
58 |
+
- name: Macro Precision (test_2020)
|
59 |
+
type: precision_macro
|
60 |
+
value: 0.6354522364268572
|
61 |
+
- name: Macro Recall (test_2020)
|
62 |
+
type: recall_macro
|
63 |
+
value: 0.5987967256237715
|
64 |
+
- name: Entity Span F1 (test_2020)
|
65 |
+
type: f1_entity_span
|
66 |
+
value: 0.7649595687331536
|
67 |
+
- name: Entity Span Precision (test_2020)
|
68 |
+
type: precision_entity_span
|
69 |
+
value: 0.7958496915311273
|
70 |
+
- name: Entity Span Recall (test_2020)
|
71 |
+
type: recall_entity_span
|
72 |
+
value: 0.736377789309808
|
73 |
+
|
74 |
+
pipeline_tag: token-classification
|
75 |
+
widget:
|
76 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
77 |
+
example_title: "NER Example 1"
|
78 |
+
---
|
79 |
+
# tner/roberta-large-tweetner7-2020-selflabel2021-continuous
|
80 |
+
|
81 |
+
This model is a fine-tuned version of [tner/roberta-large-tweetner-2020](https://huggingface.co/tner/roberta-large-tweetner-2020) on the
|
82 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train` split). This model is fine-tuned on self-labeled dataset which is the `extra_2021` split of the [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) annotated by [tner/roberta-large](https://huggingface.co/tner/tner/roberta-large-tweetner7-2020)). Please check [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling) for more detail of reproducing the model. The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on the self-labeled dataset.
|
83 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
84 |
+
for more detail). It achieves the following results on the test set of 2021:
|
85 |
+
- F1 (micro): 0.644817329816488
|
86 |
+
- Precision (micro): 0.6264311416421328
|
87 |
+
- Recall (micro): 0.6643154486586494
|
88 |
+
- F1 (macro): 0.5941147287547678
|
89 |
+
- Precision (macro): 0.5756979462999651
|
90 |
+
- Recall (macro): 0.6198566504961354
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
95 |
+
- corporation: 0.5058051489146896
|
96 |
+
- creative_work: 0.4567022538552788
|
97 |
+
- event: 0.4439876670092498
|
98 |
+
- group: 0.6109472304162569
|
99 |
+
- location: 0.6636304489264802
|
100 |
+
- person: 0.8363309352517986
|
101 |
+
- product: 0.6413994169096211
|
102 |
+
|
103 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
104 |
+
- F1 (micro):
|
105 |
+
- 90%: [0.6360417063561062, 0.6548454319775926]
|
106 |
+
- 95%: [0.6341460646789854, 0.6560370464501823]
|
107 |
+
- F1 (macro):
|
108 |
+
- 90%: [0.6360417063561062, 0.6548454319775926]
|
109 |
+
- 95%: [0.6341460646789854, 0.6560370464501823]
|
110 |
+
|
111 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-continuous/raw/main/eval/metric.json)
|
112 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-continuous/raw/main/eval/metric_span.json).
|
113 |
+
|
114 |
+
### Usage
|
115 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
116 |
+
```shell
|
117 |
+
pip install tner
|
118 |
+
```
|
119 |
+
and activate model as below.
|
120 |
+
```python
|
121 |
+
from tner import TransformersNER
|
122 |
+
model = TransformersNER("tner/roberta-large-tweetner7-2020-selflabel2021-continuous")
|
123 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
124 |
+
```
|
125 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- dataset: ['tner/tweetner7']
|
131 |
+
- dataset_split: train
|
132 |
+
- dataset_name: None
|
133 |
+
- local_dataset: {'train': 'tweet_ner/2021.extra.tner/roberta-large-2020.txt', 'validation': 'tweet_ner/2020.dev.txt'}
|
134 |
+
- model: tner/roberta-large-tweetner-2020
|
135 |
+
- crf: True
|
136 |
+
- max_length: 128
|
137 |
+
- epoch: 30
|
138 |
+
- batch_size: 32
|
139 |
+
- lr: 1e-05
|
140 |
+
- random_seed: 0
|
141 |
+
- gradient_accumulation_steps: 1
|
142 |
+
- weight_decay: 1e-07
|
143 |
+
- lr_warmup_step_ratio: 0.3
|
144 |
+
- max_grad_norm: 1
|
145 |
+
|
146 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-continuous/raw/main/trainer_config.json).
|
147 |
+
|
148 |
+
### Reference
|
149 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
150 |
+
|
151 |
+
```
|
152 |
+
|
153 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
154 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
155 |
+
author = "Ushio, Asahi and
|
156 |
+
Camacho-Collados, Jose",
|
157 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
158 |
+
month = apr,
|
159 |
+
year = "2021",
|
160 |
+
address = "Online",
|
161 |
+
publisher = "Association for Computational Linguistics",
|
162 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
163 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
164 |
+
pages = "53--62",
|
165 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
166 |
+
}
|
167 |
+
|
168 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.6524093123984841, "micro/f1_ci": {}, "micro/recall": 0.6295715778474399, "micro/precision": 0.6769662921348315, "macro/f1": 0.5953364408334074, "macro/f1_ci": {}, "macro/recall": 0.582165610190696, "macro/precision": 0.6144459451639951, "per_entity_metric": {"corporation": {"f1": 0.4948453608247423, "f1_ci": {}, "precision": 0.518918918918919, "recall": 0.4729064039408867}, "creative_work": {"f1": 0.5311004784688995, "f1_ci": {}, "precision": 0.5285714285714286, "recall": 0.5336538461538461}, "event": {"f1": 0.38604651162790693, "f1_ci": {}, "precision": 0.47701149425287354, "recall": 0.32421875}, "group": {"f1": 0.5839080459770116, "f1_ci": {}, "precision": 0.6105769230769231, "recall": 0.5594713656387665}, "location": {"f1": 0.6597938144329896, "f1_ci": {}, "precision": 0.6183574879227053, "recall": 0.7071823204419889}, "person": {"f1": 0.8798617113223853, "f1_ci": {}, "precision": 0.9105545617173524, "recall": 0.8511705685618729}, "product": {"f1": 0.6317991631799162, "f1_ci": {}, "precision": 0.6371308016877637, "recall": 0.6265560165975104}}}, "2021.test": {"micro/f1": 0.644817329816488, "micro/f1_ci": {"90": [0.6360417063561062, 0.6548454319775926], "95": [0.6341460646789854, 0.6560370464501823]}, "micro/recall": 0.6643154486586494, "micro/precision": 0.6264311416421328, "macro/f1": 0.5941147287547678, "macro/f1_ci": {"90": [0.5848414121578911, 0.6038057826115886], "95": [0.5820350845478711, 0.6060513462576288]}, "macro/recall": 0.6198566504961354, "macro/precision": 0.5756979462999651, "per_entity_metric": {"corporation": {"f1": 0.5058051489146896, "f1_ci": {"90": [0.48313912449808494, 0.530618218018915], "95": [0.47849280777812037, 0.5364444847786444]}, "precision": 0.46345975948196116, "recall": 0.5566666666666666}, "creative_work": {"f1": 0.4567022538552788, "f1_ci": {"90": [0.4278100225875855, 0.48546083866545087], "95": [0.42264104037430955, 0.4888449366028564]}, "precision": 0.4031413612565445, "recall": 0.5266757865937073}, "event": {"f1": 0.4439876670092498, "f1_ci": {"90": [0.41927814019962656, 0.46943924364462264], "95": [0.41511298597332785, 0.4726621822818196]}, "precision": 0.5100354191263282, "recall": 0.39308462238398545}, "group": {"f1": 0.6109472304162569, "f1_ci": {"90": [0.5912129562296317, 0.6328091890001382], "95": [0.5873284405198267, 0.6381933587682634]}, "precision": 0.6079582517938682, "recall": 0.613965744400527}, "location": {"f1": 0.6636304489264802, "f1_ci": {"90": [0.6359840503874383, 0.6900245167821328], "95": [0.6290236787920385, 0.6962843529176078]}, "precision": 0.6211936662606578, "recall": 0.7122905027932961}, "person": {"f1": 0.8363309352517986, "f1_ci": {"90": [0.8258310265077387, 0.8472827346138416], "95": [0.8238782456842353, 0.849028697845626]}, "precision": 0.8163623595505618, "recall": 0.8573008849557522}, "product": {"f1": 0.6413994169096211, "f1_ci": {"90": [0.6184853422878562, 0.6632819776388246], "95": [0.6137694360418035, 0.6673396278232638]}, "precision": 0.6077348066298343, "recall": 0.6790123456790124}}}, "2020.test": {"micro/f1": 0.6548100242522231, "micro/f1_ci": {"90": [0.6363849446917261, 0.6729678638941399], "95": [0.632988010266229, 0.6761782355773874]}, "micro/recall": 0.6305137519460301, "micro/precision": 0.6810538116591929, "macro/f1": 0.6141867781768393, "macro/f1_ci": {"90": [0.5927615570590863, 0.63339395597405], "95": [0.5897139460819198, 0.636699176958749]}, "macro/recall": 0.5987967256237715, "macro/precision": 0.6354522364268572, "per_entity_metric": {"corporation": {"f1": 0.5692695214105794, "f1_ci": {"90": [0.5148995365693302, 0.6194248948969875], "95": [0.5027287012656078, 0.625371078975007]}, "precision": 0.5485436893203883, "recall": 0.5916230366492147}, "creative_work": {"f1": 0.5175202156334232, "f1_ci": {"90": [0.4563687180673989, 0.5714285714285714], "95": [0.44505477308294206, 0.5831416826926255]}, "precision": 0.5, "recall": 0.5363128491620112}, "event": {"f1": 0.48717948717948717, "f1_ci": {"90": [0.43264831514000945, 0.540037854540933], "95": [0.42521228455095883, 0.5504527673138222]}, "precision": 0.5615763546798029, "recall": 0.43018867924528303}, "group": {"f1": 0.5760869565217392, "f1_ci": {"90": [0.5303798588309314, 0.6225573951434877], "95": [0.5220381872555786, 0.6298225641481745]}, "precision": 0.6597510373443983, "recall": 0.5112540192926045}, "location": {"f1": 0.6726726726726727, "f1_ci": {"90": [0.609375, 0.7296064977715223], "95": [0.5945904108442808, 0.7398181434720504]}, "precision": 0.6666666666666666, "recall": 0.6787878787878788}, "person": {"f1": 0.8329004329004328, "f1_ci": {"90": [0.8083653320335719, 0.8557735620235621], "95": [0.8018252663622527, 0.8603972670726598]}, "precision": 0.8604651162790697, "recall": 0.8070469798657718}, "product": {"f1": 0.6436781609195402, "f1_ci": {"90": [0.5947132077841678, 0.690951871657754], "95": [0.5843611624292543, 0.6995135009595522]}, "precision": 0.6511627906976745, "recall": 0.6363636363636364}}}, "2021.test (span detection)": {"micro/f1": 0.7835896284655965, "micro/f1_ci": {}, "micro/recall": 0.8073320226668209, "micro/precision": 0.7612037945698397, "macro/f1": 0.7835896284655965, "macro/f1_ci": {}, "macro/recall": 0.8073320226668209, "macro/precision": 0.7612037945698397}, "2020.test (span detection)": {"micro/f1": 0.7649595687331536, "micro/f1_ci": {}, "micro/recall": 0.736377789309808, "micro/precision": 0.7958496915311273, "macro/f1": 0.7649595687331536, "macro/f1_ci": {}, "macro/recall": 0.736377789309808, "macro/precision": 0.7958496915311273}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6548100242522231, "micro/f1_ci": {"90": [0.6363849446917261, 0.6729678638941399], "95": [0.632988010266229, 0.6761782355773874]}, "micro/recall": 0.6305137519460301, "micro/precision": 0.6810538116591929, "macro/f1": 0.6141867781768393, "macro/f1_ci": {"90": [0.5927615570590863, 0.63339395597405], "95": [0.5897139460819198, 0.636699176958749]}, "macro/recall": 0.5987967256237715, "macro/precision": 0.6354522364268572, "per_entity_metric": {"corporation": {"f1": 0.5692695214105794, "f1_ci": {"90": [0.5148995365693302, 0.6194248948969875], "95": [0.5027287012656078, 0.625371078975007]}, "precision": 0.5485436893203883, "recall": 0.5916230366492147}, "creative_work": {"f1": 0.5175202156334232, "f1_ci": {"90": [0.4563687180673989, 0.5714285714285714], "95": [0.44505477308294206, 0.5831416826926255]}, "precision": 0.5, "recall": 0.5363128491620112}, "event": {"f1": 0.48717948717948717, "f1_ci": {"90": [0.43264831514000945, 0.540037854540933], "95": [0.42521228455095883, 0.5504527673138222]}, "precision": 0.5615763546798029, "recall": 0.43018867924528303}, "group": {"f1": 0.5760869565217392, "f1_ci": {"90": [0.5303798588309314, 0.6225573951434877], "95": [0.5220381872555786, 0.6298225641481745]}, "precision": 0.6597510373443983, "recall": 0.5112540192926045}, "location": {"f1": 0.6726726726726727, "f1_ci": {"90": [0.609375, 0.7296064977715223], "95": [0.5945904108442808, 0.7398181434720504]}, "precision": 0.6666666666666666, "recall": 0.6787878787878788}, "person": {"f1": 0.8329004329004328, "f1_ci": {"90": [0.8083653320335719, 0.8557735620235621], "95": [0.8018252663622527, 0.8603972670726598]}, "precision": 0.8604651162790697, "recall": 0.8070469798657718}, "product": {"f1": 0.6436781609195402, "f1_ci": {"90": [0.5947132077841678, 0.690951871657754], "95": [0.5843611624292543, 0.6995135009595522]}, "precision": 0.6511627906976745, "recall": 0.6363636363636364}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.644817329816488, "micro/f1_ci": {"90": [0.6360417063561062, 0.6548454319775926], "95": [0.6341460646789854, 0.6560370464501823]}, "micro/recall": 0.6643154486586494, "micro/precision": 0.6264311416421328, "macro/f1": 0.5941147287547678, "macro/f1_ci": {"90": [0.5848414121578911, 0.6038057826115886], "95": [0.5820350845478711, 0.6060513462576288]}, "macro/recall": 0.6198566504961354, "macro/precision": 0.5756979462999651, "per_entity_metric": {"corporation": {"f1": 0.5058051489146896, "f1_ci": {"90": [0.48313912449808494, 0.530618218018915], "95": [0.47849280777812037, 0.5364444847786444]}, "precision": 0.46345975948196116, "recall": 0.5566666666666666}, "creative_work": {"f1": 0.4567022538552788, "f1_ci": {"90": [0.4278100225875855, 0.48546083866545087], "95": [0.42264104037430955, 0.4888449366028564]}, "precision": 0.4031413612565445, "recall": 0.5266757865937073}, "event": {"f1": 0.4439876670092498, "f1_ci": {"90": [0.41927814019962656, 0.46943924364462264], "95": [0.41511298597332785, 0.4726621822818196]}, "precision": 0.5100354191263282, "recall": 0.39308462238398545}, "group": {"f1": 0.6109472304162569, "f1_ci": {"90": [0.5912129562296317, 0.6328091890001382], "95": [0.5873284405198267, 0.6381933587682634]}, "precision": 0.6079582517938682, "recall": 0.613965744400527}, "location": {"f1": 0.6636304489264802, "f1_ci": {"90": [0.6359840503874383, 0.6900245167821328], "95": [0.6290236787920385, 0.6962843529176078]}, "precision": 0.6211936662606578, "recall": 0.7122905027932961}, "person": {"f1": 0.8363309352517986, "f1_ci": {"90": [0.8258310265077387, 0.8472827346138416], "95": [0.8238782456842353, 0.849028697845626]}, "precision": 0.8163623595505618, "recall": 0.8573008849557522}, "product": {"f1": 0.6413994169096211, "f1_ci": {"90": [0.6184853422878562, 0.6632819776388246], "95": [0.6137694360418035, 0.6673396278232638]}, "precision": 0.6077348066298343, "recall": 0.6790123456790124}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7649595687331536, "micro/f1_ci": {}, "micro/recall": 0.736377789309808, "micro/precision": 0.7958496915311273, "macro/f1": 0.7649595687331536, "macro/f1_ci": {}, "macro/recall": 0.736377789309808, "macro/precision": 0.7958496915311273}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7835896284655965, "micro/f1_ci": {}, "micro/recall": 0.8073320226668209, "micro/precision": 0.7612037945698397, "macro/f1": 0.7835896284655965, "macro/f1_ci": {}, "macro/recall": 0.8073320226668209, "macro/precision": 0.7612037945698397}
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train", "dataset_name": null, "local_dataset": {"train": "tweet_ner/2021.extra.tner/roberta-large-2020.txt", "validation": "tweet_ner/2020.dev.txt"}, "model": "tner/roberta-large-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|