model update
Browse files- README.md +168 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-selflabel2020
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7
|
16 |
+
type: tner/tweetner7
|
17 |
+
args: tner/tweetner7
|
18 |
+
metrics:
|
19 |
+
- name: F1 (test_2021)
|
20 |
+
type: f1
|
21 |
+
value: 0.6455908683974932
|
22 |
+
- name: Precision (test_2021)
|
23 |
+
type: precision
|
24 |
+
value: 0.6254336513443192
|
25 |
+
- name: Recall (test_2021)
|
26 |
+
type: recall
|
27 |
+
value: 0.6670906567992599
|
28 |
+
- name: Macro F1 (test_2021)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5962839441412403
|
31 |
+
- name: Macro Precision (test_2021)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5727192958380657
|
34 |
+
- name: Macro Recall (test_2021)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6267698180905158
|
37 |
+
- name: Entity Span F1 (test_2021)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7846231324492194
|
40 |
+
- name: Entity Span Precision (test_2020)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7600823937554206
|
43 |
+
- name: Entity Span Recall (test_2021)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8108014340233607
|
46 |
+
- name: F1 (test_2020)
|
47 |
+
type: f1
|
48 |
+
value: 0.6589874095901421
|
49 |
+
- name: Precision (test_2020)
|
50 |
+
type: precision
|
51 |
+
value: 0.6810631229235881
|
52 |
+
- name: Recall (test_2020)
|
53 |
+
type: recall
|
54 |
+
value: 0.6382978723404256
|
55 |
+
- name: Macro F1 (test_2020)
|
56 |
+
type: f1_macro
|
57 |
+
value: 0.6185133813760935
|
58 |
+
- name: Macro Precision (test_2020)
|
59 |
+
type: precision_macro
|
60 |
+
value: 0.6351153721439261
|
61 |
+
- name: Macro Recall (test_2020)
|
62 |
+
type: recall_macro
|
63 |
+
value: 0.6085669577041991
|
64 |
+
- name: Entity Span F1 (test_2020)
|
65 |
+
type: f1_entity_span
|
66 |
+
value: 0.7670865719646207
|
67 |
+
- name: Entity Span Precision (test_2020)
|
68 |
+
type: precision_entity_span
|
69 |
+
value: 0.7932372505543237
|
70 |
+
- name: Entity Span Recall (test_2020)
|
71 |
+
type: recall_entity_span
|
72 |
+
value: 0.7426050856253243
|
73 |
+
|
74 |
+
pipeline_tag: token-classification
|
75 |
+
widget:
|
76 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
77 |
+
example_title: "NER Example 1"
|
78 |
+
---
|
79 |
+
# tner/roberta-large-tweetner7-selflabel2020
|
80 |
+
|
81 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
|
82 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train` split). This model is fine-tuned on self-labeled dataset which is the `extra_2020` split of the [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) annotated by [tner/roberta-large](https://huggingface.co/tner/tner/roberta-large-tweetner7-2020)). Please check [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling) for more detail of reproducing the model.
|
83 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
84 |
+
for more detail). It achieves the following results on the test set of 2021:
|
85 |
+
- F1 (micro): 0.6455908683974932
|
86 |
+
- Precision (micro): 0.6254336513443192
|
87 |
+
- Recall (micro): 0.6670906567992599
|
88 |
+
- F1 (macro): 0.5962839441412403
|
89 |
+
- Precision (macro): 0.5727192958380657
|
90 |
+
- Recall (macro): 0.6267698180905158
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
95 |
+
- corporation: 0.522762148337596
|
96 |
+
- creative_work: 0.468235294117647
|
97 |
+
- event: 0.4446564885496183
|
98 |
+
- group: 0.6155398587285571
|
99 |
+
- location: 0.6423718344657197
|
100 |
+
- person: 0.840225906358171
|
101 |
+
- product: 0.6401960784313725
|
102 |
+
|
103 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
104 |
+
- F1 (micro):
|
105 |
+
- 90%: [0.6371204057050158, 0.6550747724054871]
|
106 |
+
- 95%: [0.6350657043101348, 0.6568098006368783]
|
107 |
+
- F1 (macro):
|
108 |
+
- 90%: [0.6371204057050158, 0.6550747724054871]
|
109 |
+
- 95%: [0.6350657043101348, 0.6568098006368783]
|
110 |
+
|
111 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2020/raw/main/eval/metric.json)
|
112 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2020/raw/main/eval/metric_span.json).
|
113 |
+
|
114 |
+
### Usage
|
115 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
116 |
+
```shell
|
117 |
+
pip install tner
|
118 |
+
```
|
119 |
+
and activate model as below.
|
120 |
+
```python
|
121 |
+
from tner import TransformersNER
|
122 |
+
model = TransformersNER("tner/roberta-large-tweetner7-selflabel2020")
|
123 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
124 |
+
```
|
125 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- dataset: ['tner/tweetner7']
|
131 |
+
- dataset_split: train
|
132 |
+
- dataset_name: None
|
133 |
+
- local_dataset: {'train': 'tweet_ner/2020.extra.tner/roberta-large-2020.txt', 'validation': 'tweet_ner/2020.dev.txt'}
|
134 |
+
- model: roberta-large
|
135 |
+
- crf: True
|
136 |
+
- max_length: 128
|
137 |
+
- epoch: 30
|
138 |
+
- batch_size: 32
|
139 |
+
- lr: 1e-05
|
140 |
+
- random_seed: 0
|
141 |
+
- gradient_accumulation_steps: 1
|
142 |
+
- weight_decay: 1e-07
|
143 |
+
- lr_warmup_step_ratio: 0.15
|
144 |
+
- max_grad_norm: 1
|
145 |
+
|
146 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2020/raw/main/trainer_config.json).
|
147 |
+
|
148 |
+
### Reference
|
149 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
150 |
+
|
151 |
+
```
|
152 |
+
|
153 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
154 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
155 |
+
author = "Ushio, Asahi and
|
156 |
+
Camacho-Collados, Jose",
|
157 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
158 |
+
month = apr,
|
159 |
+
year = "2021",
|
160 |
+
address = "Online",
|
161 |
+
publisher = "Association for Computational Linguistics",
|
162 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
163 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
164 |
+
pages = "53--62",
|
165 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
166 |
+
}
|
167 |
+
|
168 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.6497159859345416, "micro/f1_ci": {}, "micro/recall": 0.6274817136886103, "micro/precision": 0.6735838474481212, "macro/f1": 0.595168476497736, "macro/f1_ci": {}, "macro/recall": 0.5823140804003363, "macro/precision": 0.6134127256594191, "per_entity_metric": {"corporation": {"f1": 0.503896103896104, "f1_ci": {}, "precision": 0.532967032967033, "recall": 0.47783251231527096}, "creative_work": {"f1": 0.5169082125603864, "f1_ci": {}, "precision": 0.5194174757281553, "recall": 0.5144230769230769}, "event": {"f1": 0.3747276688453159, "f1_ci": {}, "precision": 0.4236453201970443, "recall": 0.3359375}, "group": {"f1": 0.5687203791469194, "f1_ci": {}, "precision": 0.6153846153846154, "recall": 0.5286343612334802}, "location": {"f1": 0.6716417910447762, "f1_ci": {}, "precision": 0.6108597285067874, "recall": 0.7458563535911602}, "person": {"f1": 0.8765217391304349, "f1_ci": {}, "precision": 0.9130434782608695, "recall": 0.842809364548495}, "product": {"f1": 0.6537634408602151, "f1_ci": {}, "precision": 0.6785714285714286, "recall": 0.6307053941908713}}}, "2021.test": {"micro/f1": 0.6455908683974932, "micro/f1_ci": {"90": [0.6371204057050158, 0.6550747724054871], "95": [0.6350657043101348, 0.6568098006368783]}, "micro/recall": 0.6670906567992599, "micro/precision": 0.6254336513443192, "macro/f1": 0.5962839441412403, "macro/f1_ci": {"90": [0.5866402556988275, 0.6060444749938684], "95": [0.5847471469279276, 0.6077635044702457]}, "macro/recall": 0.6267698180905158, "macro/precision": 0.5727192958380657, "per_entity_metric": {"corporation": {"f1": 0.522762148337596, "f1_ci": {"90": [0.49973681393417374, 0.5471596100193149], "95": [0.4945873783946403, 0.5525733399971992]}, "precision": 0.4843601895734597, "recall": 0.5677777777777778}, "creative_work": {"f1": 0.468235294117647, "f1_ci": {"90": [0.4391420478553882, 0.4976060818012257], "95": [0.43346081582227297, 0.5044102177633336]}, "precision": 0.4107327141382869, "recall": 0.5444596443228454}, "event": {"f1": 0.4446564885496183, "f1_ci": {"90": [0.42187388657957237, 0.46923141953822195], "95": [0.4184013216599329, 0.4749416023012337]}, "precision": 0.4674022066198596, "recall": 0.4240218380345769}, "group": {"f1": 0.6155398587285571, "f1_ci": {"90": [0.5951667589966113, 0.6381605192440433], "95": [0.5920980489275562, 0.6428354803338648]}, "precision": 0.6288659793814433, "recall": 0.6027667984189723}, "location": {"f1": 0.6423718344657197, "f1_ci": {"90": [0.6144162449467848, 0.6682611851729876], "95": [0.61024506683641, 0.6720074834037416]}, "precision": 0.5758582502768549, "recall": 0.7262569832402235}, "person": {"f1": 0.840225906358171, "f1_ci": {"90": [0.8297661584761087, 0.851118291744757], "95": [0.8284000592006534, 0.8525454107688213]}, "precision": 0.8303925099027728, "recall": 0.8502949852507374}, "product": {"f1": 0.6401960784313725, "f1_ci": {"90": [0.6188782031721285, 0.6619447156064523], "95": [0.6147969820761672, 0.6654252026481837]}, "precision": 0.6114232209737828, "recall": 0.6718106995884774}}}, "2020.test": {"micro/f1": 0.6589874095901421, "micro/f1_ci": {"90": [0.6385021699858212, 0.6777882762990388], "95": [0.6344556724262541, 0.6809892848641955]}, "micro/recall": 0.6382978723404256, "micro/precision": 0.6810631229235881, "macro/f1": 0.6185133813760935, "macro/f1_ci": {"90": [0.5945654495892557, 0.6390184922948274], "95": [0.5910565487766962, 0.6431119627935548]}, "macro/recall": 0.6085669577041991, "macro/precision": 0.6351153721439261, "per_entity_metric": {"corporation": {"f1": 0.581453634085213, "f1_ci": {"90": [0.5203143050197259, 0.6341570860642527], "95": [0.5087267380681245, 0.645339211120602]}, "precision": 0.5576923076923077, "recall": 0.6073298429319371}, "creative_work": {"f1": 0.519893899204244, "f1_ci": {"90": [0.45919192076494225, 0.5729194819819821], "95": [0.4496993234778251, 0.5788147694818441]}, "precision": 0.494949494949495, "recall": 0.547486033519553}, "event": {"f1": 0.48049281314168374, "f1_ci": {"90": [0.4285569985569985, 0.5315007805396874], "95": [0.4188008130081301, 0.5401474904055986]}, "precision": 0.527027027027027, "recall": 0.44150943396226416}, "group": {"f1": 0.5724907063197026, "f1_ci": {"90": [0.5248468820106881, 0.6198803159753711], "95": [0.5152538655348761, 0.6319220978293597]}, "precision": 0.6784140969162996, "recall": 0.49517684887459806}, "location": {"f1": 0.6685878962536022, "f1_ci": {"90": [0.6005705705705706, 0.7272727272727272], "95": [0.5917728867357167, 0.7374579124579128]}, "precision": 0.6373626373626373, "recall": 0.703030303030303}, "person": {"f1": 0.8415584415584415, "f1_ci": {"90": [0.8165424697279215, 0.8626729733238138], "95": [0.8128192329092423, 0.8676861375030747]}, "precision": 0.8694096601073346, "recall": 0.8154362416107382}, "product": {"f1": 0.6651162790697673, "f1_ci": {"90": [0.6157048774126238, 0.7126683307139996], "95": [0.6045411621182, 0.723205128986824]}, "precision": 0.680952380952381, "recall": 0.65}}}, "2021.test (span detection)": {"micro/f1": 0.7846231324492194, "micro/f1_ci": {}, "micro/recall": 0.8108014340233607, "micro/precision": 0.7600823937554206, "macro/f1": 0.7846231324492194, "macro/f1_ci": {}, "macro/recall": 0.8108014340233607, "macro/precision": 0.7600823937554206}, "2020.test (span detection)": {"micro/f1": 0.7670865719646207, "micro/f1_ci": {}, "micro/recall": 0.7426050856253243, "micro/precision": 0.7932372505543237, "macro/f1": 0.7670865719646207, "macro/f1_ci": {}, "macro/recall": 0.7426050856253243, "macro/precision": 0.7932372505543237}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6589874095901421, "micro/f1_ci": {"90": [0.6385021699858212, 0.6777882762990388], "95": [0.6344556724262541, 0.6809892848641955]}, "micro/recall": 0.6382978723404256, "micro/precision": 0.6810631229235881, "macro/f1": 0.6185133813760935, "macro/f1_ci": {"90": [0.5945654495892557, 0.6390184922948274], "95": [0.5910565487766962, 0.6431119627935548]}, "macro/recall": 0.6085669577041991, "macro/precision": 0.6351153721439261, "per_entity_metric": {"corporation": {"f1": 0.581453634085213, "f1_ci": {"90": [0.5203143050197259, 0.6341570860642527], "95": [0.5087267380681245, 0.645339211120602]}, "precision": 0.5576923076923077, "recall": 0.6073298429319371}, "creative_work": {"f1": 0.519893899204244, "f1_ci": {"90": [0.45919192076494225, 0.5729194819819821], "95": [0.4496993234778251, 0.5788147694818441]}, "precision": 0.494949494949495, "recall": 0.547486033519553}, "event": {"f1": 0.48049281314168374, "f1_ci": {"90": [0.4285569985569985, 0.5315007805396874], "95": [0.4188008130081301, 0.5401474904055986]}, "precision": 0.527027027027027, "recall": 0.44150943396226416}, "group": {"f1": 0.5724907063197026, "f1_ci": {"90": [0.5248468820106881, 0.6198803159753711], "95": [0.5152538655348761, 0.6319220978293597]}, "precision": 0.6784140969162996, "recall": 0.49517684887459806}, "location": {"f1": 0.6685878962536022, "f1_ci": {"90": [0.6005705705705706, 0.7272727272727272], "95": [0.5917728867357167, 0.7374579124579128]}, "precision": 0.6373626373626373, "recall": 0.703030303030303}, "person": {"f1": 0.8415584415584415, "f1_ci": {"90": [0.8165424697279215, 0.8626729733238138], "95": [0.8128192329092423, 0.8676861375030747]}, "precision": 0.8694096601073346, "recall": 0.8154362416107382}, "product": {"f1": 0.6651162790697673, "f1_ci": {"90": [0.6157048774126238, 0.7126683307139996], "95": [0.6045411621182, 0.723205128986824]}, "precision": 0.680952380952381, "recall": 0.65}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6455908683974932, "micro/f1_ci": {"90": [0.6371204057050158, 0.6550747724054871], "95": [0.6350657043101348, 0.6568098006368783]}, "micro/recall": 0.6670906567992599, "micro/precision": 0.6254336513443192, "macro/f1": 0.5962839441412403, "macro/f1_ci": {"90": [0.5866402556988275, 0.6060444749938684], "95": [0.5847471469279276, 0.6077635044702457]}, "macro/recall": 0.6267698180905158, "macro/precision": 0.5727192958380657, "per_entity_metric": {"corporation": {"f1": 0.522762148337596, "f1_ci": {"90": [0.49973681393417374, 0.5471596100193149], "95": [0.4945873783946403, 0.5525733399971992]}, "precision": 0.4843601895734597, "recall": 0.5677777777777778}, "creative_work": {"f1": 0.468235294117647, "f1_ci": {"90": [0.4391420478553882, 0.4976060818012257], "95": [0.43346081582227297, 0.5044102177633336]}, "precision": 0.4107327141382869, "recall": 0.5444596443228454}, "event": {"f1": 0.4446564885496183, "f1_ci": {"90": [0.42187388657957237, 0.46923141953822195], "95": [0.4184013216599329, 0.4749416023012337]}, "precision": 0.4674022066198596, "recall": 0.4240218380345769}, "group": {"f1": 0.6155398587285571, "f1_ci": {"90": [0.5951667589966113, 0.6381605192440433], "95": [0.5920980489275562, 0.6428354803338648]}, "precision": 0.6288659793814433, "recall": 0.6027667984189723}, "location": {"f1": 0.6423718344657197, "f1_ci": {"90": [0.6144162449467848, 0.6682611851729876], "95": [0.61024506683641, 0.6720074834037416]}, "precision": 0.5758582502768549, "recall": 0.7262569832402235}, "person": {"f1": 0.840225906358171, "f1_ci": {"90": [0.8297661584761087, 0.851118291744757], "95": [0.8284000592006534, 0.8525454107688213]}, "precision": 0.8303925099027728, "recall": 0.8502949852507374}, "product": {"f1": 0.6401960784313725, "f1_ci": {"90": [0.6188782031721285, 0.6619447156064523], "95": [0.6147969820761672, 0.6654252026481837]}, "precision": 0.6114232209737828, "recall": 0.6718106995884774}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7670865719646207, "micro/f1_ci": {}, "micro/recall": 0.7426050856253243, "micro/precision": 0.7932372505543237, "macro/f1": 0.7670865719646207, "macro/f1_ci": {}, "macro/recall": 0.7426050856253243, "macro/precision": 0.7932372505543237}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7846231324492194, "micro/f1_ci": {}, "micro/recall": 0.8108014340233607, "micro/precision": 0.7600823937554206, "macro/f1": 0.7846231324492194, "macro/f1_ci": {}, "macro/recall": 0.8108014340233607, "macro/precision": 0.7600823937554206}
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train", "dataset_name": null, "local_dataset": {"train": "tweet_ner/2020.extra.tner/roberta-large-2020.txt", "validation": "tweet_ner/2020.dev.txt"}, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|