model update
Browse files- README.md +168 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-2020-selflabel2020-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7
|
16 |
+
type: tner/tweetner7
|
17 |
+
args: tner/tweetner7
|
18 |
+
metrics:
|
19 |
+
- name: F1 (test_2021)
|
20 |
+
type: f1
|
21 |
+
value: 0.6514522821576764
|
22 |
+
- name: Precision (test_2021)
|
23 |
+
type: precision
|
24 |
+
value: 0.6323753537992598
|
25 |
+
- name: Recall (test_2021)
|
26 |
+
type: recall
|
27 |
+
value: 0.6717160037002775
|
28 |
+
- name: Macro F1 (test_2021)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6022910652688035
|
31 |
+
- name: Macro Precision (test_2021)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5829347583676058
|
34 |
+
- name: Macro Recall (test_2021)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6268182581614908
|
37 |
+
- name: Entity Span F1 (test_2021)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.787304435596927
|
40 |
+
- name: Entity Span Precision (test_2020)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7642064010450685
|
43 |
+
- name: Entity Span Recall (test_2021)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8118422574303227
|
46 |
+
- name: F1 (test_2020)
|
47 |
+
type: f1
|
48 |
+
value: 0.667024993281376
|
49 |
+
- name: Precision (test_2020)
|
50 |
+
type: precision
|
51 |
+
value: 0.6917502787068004
|
52 |
+
- name: Recall (test_2020)
|
53 |
+
type: recall
|
54 |
+
value: 0.6440062272963155
|
55 |
+
- name: Macro F1 (test_2020)
|
56 |
+
type: f1_macro
|
57 |
+
value: 0.6285598697810462
|
58 |
+
- name: Macro Precision (test_2020)
|
59 |
+
type: precision_macro
|
60 |
+
value: 0.649215603090582
|
61 |
+
- name: Macro Recall (test_2020)
|
62 |
+
type: recall_macro
|
63 |
+
value: 0.6128675304056594
|
64 |
+
- name: Entity Span F1 (test_2020)
|
65 |
+
type: f1_entity_span
|
66 |
+
value: 0.7711750470556602
|
67 |
+
- name: Entity Span Precision (test_2020)
|
68 |
+
type: precision_entity_span
|
69 |
+
value: 0.8002232142857143
|
70 |
+
- name: Entity Span Recall (test_2020)
|
71 |
+
type: recall_entity_span
|
72 |
+
value: 0.7441619097042034
|
73 |
+
|
74 |
+
pipeline_tag: token-classification
|
75 |
+
widget:
|
76 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
77 |
+
example_title: "NER Example 1"
|
78 |
+
---
|
79 |
+
# tner/roberta-large-tweetner7-2020-selflabel2020-continuous
|
80 |
+
|
81 |
+
This model is a fine-tuned version of [tner/roberta-large-tweetner-2020](https://huggingface.co/tner/roberta-large-tweetner-2020) on the
|
82 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train` split). This model is fine-tuned on self-labeled dataset which is the `extra_2020` split of the [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) annotated by [tner/roberta-large](https://huggingface.co/tner/tner/roberta-large-tweetner7-2020)). Please check [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling) for more detail of reproducing the model. The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on the self-labeled dataset.
|
83 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
84 |
+
for more detail). It achieves the following results on the test set of 2021:
|
85 |
+
- F1 (micro): 0.6514522821576764
|
86 |
+
- Precision (micro): 0.6323753537992598
|
87 |
+
- Recall (micro): 0.6717160037002775
|
88 |
+
- F1 (macro): 0.6022910652688035
|
89 |
+
- Precision (macro): 0.5829347583676058
|
90 |
+
- Recall (macro): 0.6268182581614908
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
95 |
+
- corporation: 0.5252837977296182
|
96 |
+
- creative_work: 0.4650306748466258
|
97 |
+
- event: 0.46176911544227883
|
98 |
+
- group: 0.608667941363926
|
99 |
+
- location: 0.6666666666666666
|
100 |
+
- person: 0.8382696104828578
|
101 |
+
- product: 0.6503496503496504
|
102 |
+
|
103 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
104 |
+
- F1 (micro):
|
105 |
+
- 90%: [0.6429569959405362, 0.6605302879870334]
|
106 |
+
- 95%: [0.6410815271146394, 0.6628490227012314]
|
107 |
+
- F1 (macro):
|
108 |
+
- 90%: [0.6429569959405362, 0.6605302879870334]
|
109 |
+
- 95%: [0.6410815271146394, 0.6628490227012314]
|
110 |
+
|
111 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2020-continuous/raw/main/eval/metric.json)
|
112 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2020-continuous/raw/main/eval/metric_span.json).
|
113 |
+
|
114 |
+
### Usage
|
115 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
116 |
+
```shell
|
117 |
+
pip install tner
|
118 |
+
```
|
119 |
+
and activate model as below.
|
120 |
+
```python
|
121 |
+
from tner import TransformersNER
|
122 |
+
model = TransformersNER("tner/roberta-large-tweetner7-2020-selflabel2020-continuous")
|
123 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
124 |
+
```
|
125 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- dataset: ['tner/tweetner7']
|
131 |
+
- dataset_split: train
|
132 |
+
- dataset_name: None
|
133 |
+
- local_dataset: {'train': 'tweet_ner/2020.extra.tner/roberta-large-2020.txt', 'validation': 'tweet_ner/2020.dev.txt'}
|
134 |
+
- model: tner/roberta-large-tweetner-2020
|
135 |
+
- crf: True
|
136 |
+
- max_length: 128
|
137 |
+
- epoch: 30
|
138 |
+
- batch_size: 32
|
139 |
+
- lr: 1e-05
|
140 |
+
- random_seed: 0
|
141 |
+
- gradient_accumulation_steps: 1
|
142 |
+
- weight_decay: 1e-07
|
143 |
+
- lr_warmup_step_ratio: 0.3
|
144 |
+
- max_grad_norm: 1
|
145 |
+
|
146 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2020-continuous/raw/main/trainer_config.json).
|
147 |
+
|
148 |
+
### Reference
|
149 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
150 |
+
|
151 |
+
```
|
152 |
+
|
153 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
154 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
155 |
+
author = "Ushio, Asahi and
|
156 |
+
Camacho-Collados, Jose",
|
157 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
158 |
+
month = apr,
|
159 |
+
year = "2021",
|
160 |
+
address = "Online",
|
161 |
+
publisher = "Association for Computational Linguistics",
|
162 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
163 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
164 |
+
pages = "53--62",
|
165 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
166 |
+
}
|
167 |
+
|
168 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.648399348887683, "micro/f1_ci": {}, "micro/recall": 0.6243469174503657, "micro/precision": 0.6743792325056434, "macro/f1": 0.5909644689649175, "macro/f1_ci": {}, "macro/recall": 0.5766214441252561, "macro/precision": 0.6111093659335289, "per_entity_metric": {"corporation": {"f1": 0.5117493472584856, "f1_ci": {}, "precision": 0.5444444444444444, "recall": 0.4827586206896552}, "creative_work": {"f1": 0.5172413793103448, "f1_ci": {}, "precision": 0.5303030303030303, "recall": 0.5048076923076923}, "event": {"f1": 0.3615560640732265, "f1_ci": {}, "precision": 0.43646408839779005, "recall": 0.30859375}, "group": {"f1": 0.5714285714285715, "f1_ci": {}, "precision": 0.579185520361991, "recall": 0.5638766519823789}, "location": {"f1": 0.6531645569620254, "f1_ci": {}, "precision": 0.602803738317757, "recall": 0.712707182320442}, "person": {"f1": 0.8781331028522039, "f1_ci": {}, "precision": 0.9087656529516994, "recall": 0.8494983277591973}, "product": {"f1": 0.6434782608695652, "f1_ci": {}, "precision": 0.6757990867579908, "recall": 0.6141078838174274}}}, "2021.test": {"micro/f1": 0.6514522821576764, "micro/f1_ci": {"90": [0.6429569959405362, 0.6605302879870334], "95": [0.6410815271146394, 0.6628490227012314]}, "micro/recall": 0.6717160037002775, "micro/precision": 0.6323753537992598, "macro/f1": 0.6022910652688035, "macro/f1_ci": {"90": [0.5926768159935056, 0.6116335368191376], "95": [0.5909206316142176, 0.6143321683898024]}, "macro/recall": 0.6268182581614908, "macro/precision": 0.5829347583676058, "per_entity_metric": {"corporation": {"f1": 0.5252837977296182, "f1_ci": {"90": [0.5017318062264439, 0.5492394810681811], "95": [0.4969478277714551, 0.5549366440877337]}, "precision": 0.4903660886319846, "recall": 0.5655555555555556}, "creative_work": {"f1": 0.4650306748466258, "f1_ci": {"90": [0.4350009909824847, 0.49549433532532633], "95": [0.43058084497165894, 0.5005915659244724]}, "precision": 0.42157953281423804, "recall": 0.518467852257182}, "event": {"f1": 0.46176911544227883, "f1_ci": {"90": [0.4377705513051409, 0.48587064030403615], "95": [0.4335950663509719, 0.4906232955871996]}, "precision": 0.5121951219512195, "recall": 0.42038216560509556}, "group": {"f1": 0.608667941363926, "f1_ci": {"90": [0.5887827974494642, 0.630985261576994], "95": [0.5852987582327822, 0.6351036898111154]}, "precision": 0.5895061728395061, "recall": 0.6291172595520421}, "location": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.6391991938404371, 0.6920817369093231], "95": [0.6337259083517713, 0.6975266062278282]}, "precision": 0.6181384248210023, "recall": 0.723463687150838}, "person": {"f1": 0.8382696104828578, "f1_ci": {"90": [0.8279126000262365, 0.8493670331047011], "95": [0.8259703577817044, 0.8508948921014351]}, "precision": 0.8167191325638335, "recall": 0.8609882005899705}, "product": {"f1": 0.6503496503496504, "f1_ci": {"90": [0.6280545085679369, 0.6716338102519296], "95": [0.624125459824057, 0.6750003009147809]}, "precision": 0.6320388349514563, "recall": 0.6697530864197531}}}, "2020.test": {"micro/f1": 0.667024993281376, "micro/f1_ci": {"90": [0.6466483696976761, 0.6850849057591648], "95": [0.6436743243865384, 0.6890168875048278]}, "micro/recall": 0.6440062272963155, "micro/precision": 0.6917502787068004, "macro/f1": 0.6285598697810462, "macro/f1_ci": {"90": [0.6062904363883691, 0.6482978043911523], "95": [0.6038447309391324, 0.6523739773360004]}, "macro/recall": 0.6128675304056594, "macro/precision": 0.649215603090582, "per_entity_metric": {"corporation": {"f1": 0.5935162094763092, "f1_ci": {"90": [0.5359767215497031, 0.6460952232612215], "95": [0.5249477762803234, 0.6574728389230041]}, "precision": 0.5666666666666667, "recall": 0.6230366492146597}, "creative_work": {"f1": 0.5444444444444444, "f1_ci": {"90": [0.48537777777777774, 0.5994252016113202], "95": [0.47648156441259887, 0.6054173290937997]}, "precision": 0.5414364640883977, "recall": 0.547486033519553}, "event": {"f1": 0.48275862068965514, "f1_ci": {"90": [0.4299044276229543, 0.5339366515837104], "95": [0.4217935585792183, 0.5421691882502304]}, "precision": 0.5628140703517588, "recall": 0.4226415094339623}, "group": {"f1": 0.5944055944055943, "f1_ci": {"90": [0.5538405492503853, 0.6375911754490146], "95": [0.5468783927472158, 0.6455727638527957]}, "precision": 0.6513409961685823, "recall": 0.5466237942122186}, "location": {"f1": 0.6766467065868264, "f1_ci": {"90": [0.6157607504149832, 0.7339152974622686], "95": [0.604803715999767, 0.7449669237130055]}, "precision": 0.6686390532544378, "recall": 0.6848484848484848}, "person": {"f1": 0.8336192109777015, "f1_ci": {"90": [0.8083917283340442, 0.8571428571428572], "95": [0.8027000095812972, 0.8622965016363554]}, "precision": 0.8526315789473684, "recall": 0.8154362416107382}, "product": {"f1": 0.6745283018867924, "f1_ci": {"90": [0.6244026793457135, 0.7244172642191439], "95": [0.6130380563874831, 0.7365985667588634]}, "precision": 0.7009803921568627, "recall": 0.65}}}, "2021.test (span detection)": {"micro/f1": 0.787304435596927, "micro/f1_ci": {}, "micro/recall": 0.8118422574303227, "micro/precision": 0.7642064010450685, "macro/f1": 0.787304435596927, "macro/f1_ci": {}, "macro/recall": 0.8118422574303227, "macro/precision": 0.7642064010450685}, "2020.test (span detection)": {"micro/f1": 0.7711750470556602, "micro/f1_ci": {}, "micro/recall": 0.7441619097042034, "micro/precision": 0.8002232142857143, "macro/f1": 0.7711750470556602, "macro/f1_ci": {}, "macro/recall": 0.7441619097042034, "macro/precision": 0.8002232142857143}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.667024993281376, "micro/f1_ci": {"90": [0.6466483696976761, 0.6850849057591648], "95": [0.6436743243865384, 0.6890168875048278]}, "micro/recall": 0.6440062272963155, "micro/precision": 0.6917502787068004, "macro/f1": 0.6285598697810462, "macro/f1_ci": {"90": [0.6062904363883691, 0.6482978043911523], "95": [0.6038447309391324, 0.6523739773360004]}, "macro/recall": 0.6128675304056594, "macro/precision": 0.649215603090582, "per_entity_metric": {"corporation": {"f1": 0.5935162094763092, "f1_ci": {"90": [0.5359767215497031, 0.6460952232612215], "95": [0.5249477762803234, 0.6574728389230041]}, "precision": 0.5666666666666667, "recall": 0.6230366492146597}, "creative_work": {"f1": 0.5444444444444444, "f1_ci": {"90": [0.48537777777777774, 0.5994252016113202], "95": [0.47648156441259887, 0.6054173290937997]}, "precision": 0.5414364640883977, "recall": 0.547486033519553}, "event": {"f1": 0.48275862068965514, "f1_ci": {"90": [0.4299044276229543, 0.5339366515837104], "95": [0.4217935585792183, 0.5421691882502304]}, "precision": 0.5628140703517588, "recall": 0.4226415094339623}, "group": {"f1": 0.5944055944055943, "f1_ci": {"90": [0.5538405492503853, 0.6375911754490146], "95": [0.5468783927472158, 0.6455727638527957]}, "precision": 0.6513409961685823, "recall": 0.5466237942122186}, "location": {"f1": 0.6766467065868264, "f1_ci": {"90": [0.6157607504149832, 0.7339152974622686], "95": [0.604803715999767, 0.7449669237130055]}, "precision": 0.6686390532544378, "recall": 0.6848484848484848}, "person": {"f1": 0.8336192109777015, "f1_ci": {"90": [0.8083917283340442, 0.8571428571428572], "95": [0.8027000095812972, 0.8622965016363554]}, "precision": 0.8526315789473684, "recall": 0.8154362416107382}, "product": {"f1": 0.6745283018867924, "f1_ci": {"90": [0.6244026793457135, 0.7244172642191439], "95": [0.6130380563874831, 0.7365985667588634]}, "precision": 0.7009803921568627, "recall": 0.65}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6514522821576764, "micro/f1_ci": {"90": [0.6429569959405362, 0.6605302879870334], "95": [0.6410815271146394, 0.6628490227012314]}, "micro/recall": 0.6717160037002775, "micro/precision": 0.6323753537992598, "macro/f1": 0.6022910652688035, "macro/f1_ci": {"90": [0.5926768159935056, 0.6116335368191376], "95": [0.5909206316142176, 0.6143321683898024]}, "macro/recall": 0.6268182581614908, "macro/precision": 0.5829347583676058, "per_entity_metric": {"corporation": {"f1": 0.5252837977296182, "f1_ci": {"90": [0.5017318062264439, 0.5492394810681811], "95": [0.4969478277714551, 0.5549366440877337]}, "precision": 0.4903660886319846, "recall": 0.5655555555555556}, "creative_work": {"f1": 0.4650306748466258, "f1_ci": {"90": [0.4350009909824847, 0.49549433532532633], "95": [0.43058084497165894, 0.5005915659244724]}, "precision": 0.42157953281423804, "recall": 0.518467852257182}, "event": {"f1": 0.46176911544227883, "f1_ci": {"90": [0.4377705513051409, 0.48587064030403615], "95": [0.4335950663509719, 0.4906232955871996]}, "precision": 0.5121951219512195, "recall": 0.42038216560509556}, "group": {"f1": 0.608667941363926, "f1_ci": {"90": [0.5887827974494642, 0.630985261576994], "95": [0.5852987582327822, 0.6351036898111154]}, "precision": 0.5895061728395061, "recall": 0.6291172595520421}, "location": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.6391991938404371, 0.6920817369093231], "95": [0.6337259083517713, 0.6975266062278282]}, "precision": 0.6181384248210023, "recall": 0.723463687150838}, "person": {"f1": 0.8382696104828578, "f1_ci": {"90": [0.8279126000262365, 0.8493670331047011], "95": [0.8259703577817044, 0.8508948921014351]}, "precision": 0.8167191325638335, "recall": 0.8609882005899705}, "product": {"f1": 0.6503496503496504, "f1_ci": {"90": [0.6280545085679369, 0.6716338102519296], "95": [0.624125459824057, 0.6750003009147809]}, "precision": 0.6320388349514563, "recall": 0.6697530864197531}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7711750470556602, "micro/f1_ci": {}, "micro/recall": 0.7441619097042034, "micro/precision": 0.8002232142857143, "macro/f1": 0.7711750470556602, "macro/f1_ci": {}, "macro/recall": 0.7441619097042034, "macro/precision": 0.8002232142857143}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.787304435596927, "micro/f1_ci": {}, "micro/recall": 0.8118422574303227, "micro/precision": 0.7642064010450685, "macro/f1": 0.787304435596927, "macro/f1_ci": {}, "macro/recall": 0.8118422574303227, "macro/precision": 0.7642064010450685}
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train", "dataset_name": null, "local_dataset": {"train": "tweet_ner/2020.extra.tner/roberta-large-2020.txt", "validation": "tweet_ner/2020.dev.txt"}, "model": "tner/roberta-large-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|