librarian-bot commited on
Commit
b92955a
1 Parent(s): e7fbeec

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`roberta-large`](https://huggingface.co/roberta-large) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien). Your input is invaluable to us!

Files changed (1) hide show
  1. README.md +43 -42
README.md CHANGED
@@ -5,76 +5,77 @@ metrics:
5
  - f1
6
  - precision
7
  - recall
 
 
 
 
 
 
8
  model-index:
9
  - name: tner/roberta-large-tweetner7-all
10
  results:
11
  - task:
12
- name: Token Classification
13
  type: token-classification
 
14
  dataset:
15
  name: tner/tweetner7
16
  type: tner/tweetner7
17
  args: tner/tweetner7
18
  metrics:
19
- - name: F1 (test_2021)
20
- type: f1
21
  value: 0.6574551220340903
22
- - name: Precision (test_2021)
23
- type: precision
24
  value: 0.644212629008989
25
- - name: Recall (test_2021)
26
- type: recall
27
  value: 0.6712534690101758
28
- - name: Macro F1 (test_2021)
29
- type: f1_macro
30
  value: 0.6124665667529737
31
- - name: Macro Precision (test_2021)
32
- type: precision_macro
33
  value: 0.6005167968535563
34
- - name: Macro Recall (test_2021)
35
- type: recall_macro
36
  value: 0.625251837701222
37
- - name: Entity Span F1 (test_2021)
38
- type: f1_entity_span
39
  value: 0.7881979839166384
40
- - name: Entity Span Precision (test_2020)
41
- type: precision_entity_span
42
  value: 0.7722783264898457
43
- - name: Entity Span Recall (test_2021)
44
- type: recall_entity_span
45
  value: 0.804787787672025
46
- - name: F1 (test_2020)
47
- type: f1
48
  value: 0.6628787878787878
49
- - name: Precision (test_2020)
50
- type: precision
51
  value: 0.6924816280384398
52
- - name: Recall (test_2020)
53
- type: recall
54
  value: 0.6357031655422937
55
- - name: Macro F1 (test_2020)
56
- type: f1_macro
57
  value: 0.6297223287745568
58
- - name: Macro Precision (test_2020)
59
- type: precision_macro
60
  value: 0.6618492079232416
61
- - name: Macro Recall (test_2020)
62
- type: recall_macro
63
  value: 0.601311568050436
64
- - name: Entity Span F1 (test_2020)
65
- type: f1_entity_span
66
  value: 0.7642760487144791
67
- - name: Entity Span Precision (test_2020)
68
- type: precision_entity_span
69
  value: 0.7986425339366516
70
- - name: Entity Span Recall (test_2020)
71
- type: recall_entity_span
72
  value: 0.7327451997924235
73
-
74
- pipeline_tag: token-classification
75
- widget:
76
- - text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}"
77
- example_title: "NER Example 1"
78
  ---
79
  # tner/roberta-large-tweetner7-all
80
 
 
5
  - f1
6
  - precision
7
  - recall
8
+ pipeline_tag: token-classification
9
+ widget:
10
+ - text: 'Get the all-analog Classic Vinyl Edition of `Takin'' Off` Album from {@herbiehancock@}
11
+ via {@bluenoterecords@} link below: {{URL}}'
12
+ example_title: NER Example 1
13
+ base_model: roberta-large
14
  model-index:
15
  - name: tner/roberta-large-tweetner7-all
16
  results:
17
  - task:
 
18
  type: token-classification
19
+ name: Token Classification
20
  dataset:
21
  name: tner/tweetner7
22
  type: tner/tweetner7
23
  args: tner/tweetner7
24
  metrics:
25
+ - type: f1
 
26
  value: 0.6574551220340903
27
+ name: F1 (test_2021)
28
+ - type: precision
29
  value: 0.644212629008989
30
+ name: Precision (test_2021)
31
+ - type: recall
32
  value: 0.6712534690101758
33
+ name: Recall (test_2021)
34
+ - type: f1_macro
35
  value: 0.6124665667529737
36
+ name: Macro F1 (test_2021)
37
+ - type: precision_macro
38
  value: 0.6005167968535563
39
+ name: Macro Precision (test_2021)
40
+ - type: recall_macro
41
  value: 0.625251837701222
42
+ name: Macro Recall (test_2021)
43
+ - type: f1_entity_span
44
  value: 0.7881979839166384
45
+ name: Entity Span F1 (test_2021)
46
+ - type: precision_entity_span
47
  value: 0.7722783264898457
48
+ name: Entity Span Precision (test_2020)
49
+ - type: recall_entity_span
50
  value: 0.804787787672025
51
+ name: Entity Span Recall (test_2021)
52
+ - type: f1
53
  value: 0.6628787878787878
54
+ name: F1 (test_2020)
55
+ - type: precision
56
  value: 0.6924816280384398
57
+ name: Precision (test_2020)
58
+ - type: recall
59
  value: 0.6357031655422937
60
+ name: Recall (test_2020)
61
+ - type: f1_macro
62
  value: 0.6297223287745568
63
+ name: Macro F1 (test_2020)
64
+ - type: precision_macro
65
  value: 0.6618492079232416
66
+ name: Macro Precision (test_2020)
67
+ - type: recall_macro
68
  value: 0.601311568050436
69
+ name: Macro Recall (test_2020)
70
+ - type: f1_entity_span
71
  value: 0.7642760487144791
72
+ name: Entity Span F1 (test_2020)
73
+ - type: precision_entity_span
74
  value: 0.7986425339366516
75
+ name: Entity Span Precision (test_2020)
76
+ - type: recall_entity_span
77
  value: 0.7327451997924235
78
+ name: Entity Span Recall (test_2020)
 
 
 
 
79
  ---
80
  # tner/roberta-large-tweetner7-all
81