model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6574551220340903
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.644212629008989
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6712534690101758
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6124665667529737
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6005167968535563
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.625251837701222
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7881979839166384
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7722783264898457
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.804787787672025
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6628787878787878
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6924816280384398
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6357031655422937
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6297223287745568
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6618492079232416
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.601311568050436
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7642760487144791
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7986425339366516
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7327451997924235
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/roberta-large-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6574551220340903
|
94 |
+
- Precision (micro): 0.644212629008989
|
95 |
+
- Recall (micro): 0.6712534690101758
|
96 |
+
- F1 (macro): 0.6124665667529737
|
97 |
+
- Precision (macro): 0.6005167968535563
|
98 |
+
- Recall (macro): 0.625251837701222
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5392156862745098
|
104 |
+
- creative_work: 0.4760582928521859
|
105 |
+
- event: 0.4673321234119782
|
106 |
+
- group: 0.6139798488664987
|
107 |
+
- location: 0.6707399864222675
|
108 |
+
- person: 0.8293212669683258
|
109 |
+
- product: 0.6906187624750498
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6484148010152769, 0.6672289519134409]
|
114 |
+
- 95%: [0.6470100684797441, 0.6689850350992637]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6484148010152769, 0.6672289519134409]
|
117 |
+
- 95%: [0.6470100684797441, 0.6689850350992637]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/roberta-large-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: roberta-large
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6533466533466533, "micro/f1_ci": {}, "micro/recall": 0.654, "micro/precision": 0.6526946107784432, "macro/f1": 0.6139317233528648, "macro/f1_ci": {}, "macro/recall": 0.6070190930048767, "macro/precision": 0.6237479137205354, "per_entity_metric": {"corporation": {"f1": 0.5631067961165048, "f1_ci": {}, "precision": 0.5576923076923077, "recall": 0.5686274509803921}, "creative_work": {"f1": 0.47297297297297297, "f1_ci": {}, "precision": 0.47297297297297297, "recall": 0.47297297297297297}, "event": {"f1": 0.4505928853754941, "f1_ci": {}, "precision": 0.4672131147540984, "recall": 0.4351145038167939}, "group": {"f1": 0.6345733041575492, "f1_ci": {}, "precision": 0.6304347826086957, "recall": 0.6387665198237885}, "location": {"f1": 0.7076923076923076, "f1_ci": {}, "precision": 0.7931034482758621, "recall": 0.6388888888888888}, "person": {"f1": 0.8231292517006802, "f1_ci": {}, "precision": 0.7934426229508197, "recall": 0.8551236749116607}, "product": {"f1": 0.6454545454545454, "f1_ci": {}, "precision": 0.6513761467889908, "recall": 0.6396396396396397}}}, "2021.test": {"micro/f1": 0.6574551220340903, "micro/f1_ci": {"90": [0.6484148010152769, 0.6672289519134409], "95": [0.6470100684797441, 0.6689850350992637]}, "micro/recall": 0.6712534690101758, "micro/precision": 0.644212629008989, "macro/f1": 0.6124665667529737, "macro/f1_ci": {"90": [0.6027797907638927, 0.6224386923123064], "95": [0.600643831363655, 0.6236643933399094]}, "macro/recall": 0.625251837701222, "macro/precision": 0.6005167968535563, "per_entity_metric": {"corporation": {"f1": 0.5392156862745098, "f1_ci": {"90": [0.5150666283343305, 0.5627638588284978], "95": [0.5107747807572307, 0.5685865874978943]}, "precision": 0.5288461538461539, "recall": 0.55}, "creative_work": {"f1": 0.4760582928521859, "f1_ci": {"90": [0.44542457349745634, 0.508050611843474], "95": [0.43965273913172126, 0.5137357875658368]}, "precision": 0.4830985915492958, "recall": 0.4692202462380301}, "event": {"f1": 0.4673321234119782, "f1_ci": {"90": [0.4453263502657273, 0.4898926859987146], "95": [0.4407011814810304, 0.4935304881902431]}, "precision": 0.4660633484162896, "recall": 0.46860782529572337}, "group": {"f1": 0.6139798488664987, "f1_ci": {"90": [0.5937377152453256, 0.6348052094376245], "95": [0.5916896908608198, 0.6386072364652792]}, "precision": 0.5880579010856454, "recall": 0.642292490118577}, "location": {"f1": 0.6707399864222675, "f1_ci": {"90": [0.6421888503799826, 0.6973484858175715], "95": [0.6384158152719541, 0.702529512070608]}, "precision": 0.6525759577278731, "recall": 0.6899441340782123}, "person": {"f1": 0.8293212669683258, "f1_ci": {"90": [0.8181446413482045, 0.8403938359511686], "95": [0.8159141098754302, 0.8428604160939993]}, "precision": 0.8144329896907216, "recall": 0.8447640117994101}, "product": {"f1": 0.6906187624750498, "f1_ci": {"90": [0.6702170960229447, 0.7112006663611212], "95": [0.6659795602550325, 0.714153086982773]}, "precision": 0.6705426356589147, "recall": 0.7119341563786008}}}, "2020.test": {"micro/f1": 0.6628787878787878, "micro/f1_ci": {"90": [0.6433422832233964, 0.6809899075848771], "95": [0.6396017768782147, 0.6838039347472534]}, "micro/recall": 0.6357031655422937, "micro/precision": 0.6924816280384398, "macro/f1": 0.6297223287745568, "macro/f1_ci": {"90": [0.6077306460764652, 0.649687103374554], "95": [0.6035631307519294, 0.6525413558422907]}, "macro/recall": 0.601311568050436, "macro/precision": 0.6618492079232416, "per_entity_metric": {"corporation": {"f1": 0.6183844011142062, "f1_ci": {"90": [0.5604604257738921, 0.6691009721496806], "95": [0.5487777897690481, 0.6787612489773658]}, "precision": 0.6607142857142857, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5159420289855072, "f1_ci": {"90": [0.4561346362649294, 0.5690866992079243], "95": [0.44507064868336543, 0.5785442676279234]}, "precision": 0.536144578313253, "recall": 0.4972067039106145}, "event": {"f1": 0.5028790786948176, "f1_ci": {"90": [0.4574887305511124, 0.5513362750160383], "95": [0.44581993761996164, 0.5625028357531761]}, "precision": 0.51171875, "recall": 0.49433962264150944}, "group": {"f1": 0.5598591549295774, "f1_ci": {"90": [0.5130891913483878, 0.6074147053457399], "95": [0.5018050541516246, 0.6181973581973583]}, "precision": 0.6186770428015564, "recall": 0.5112540192926045}, "location": {"f1": 0.6923076923076923, "f1_ci": {"90": [0.6291361251400163, 0.75], "95": [0.6172724125995154, 0.7622443181818181]}, "precision": 0.7346938775510204, "recall": 0.6545454545454545}, "person": {"f1": 0.8201193520886614, "f1_ci": {"90": [0.7918366950327573, 0.8450477632944151], "95": [0.7872476092967537, 0.8496363016720296]}, "precision": 0.8336221837088388, "recall": 0.8070469798657718}, "product": {"f1": 0.6985645933014354, "f1_ci": {"90": [0.6469248291571754, 0.744086649786838], "95": [0.6368046132971505, 0.7505999077065068]}, "precision": 0.7373737373737373, "recall": 0.6636363636363637}}}, "2021.test (span detection)": {"micro/f1": 0.7881979839166384, "micro/f1_ci": {}, "micro/recall": 0.804787787672025, "micro/precision": 0.7722783264898457, "macro/f1": 0.7881979839166384, "macro/f1_ci": {}, "macro/recall": 0.804787787672025, "macro/precision": 0.7722783264898457}, "2020.test (span detection)": {"micro/f1": 0.7642760487144791, "micro/f1_ci": {}, "micro/recall": 0.7327451997924235, "micro/precision": 0.7986425339366516, "macro/f1": 0.7642760487144791, "macro/f1_ci": {}, "macro/recall": 0.7327451997924235, "macro/precision": 0.7986425339366516}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6628787878787878, "micro/f1_ci": {"90": [0.6433422832233964, 0.6809899075848771], "95": [0.6396017768782147, 0.6838039347472534]}, "micro/recall": 0.6357031655422937, "micro/precision": 0.6924816280384398, "macro/f1": 0.6297223287745568, "macro/f1_ci": {"90": [0.6077306460764652, 0.649687103374554], "95": [0.6035631307519294, 0.6525413558422907]}, "macro/recall": 0.601311568050436, "macro/precision": 0.6618492079232416, "per_entity_metric": {"corporation": {"f1": 0.6183844011142062, "f1_ci": {"90": [0.5604604257738921, 0.6691009721496806], "95": [0.5487777897690481, 0.6787612489773658]}, "precision": 0.6607142857142857, "recall": 0.581151832460733}, "creative_work": {"f1": 0.5159420289855072, "f1_ci": {"90": [0.4561346362649294, 0.5690866992079243], "95": [0.44507064868336543, 0.5785442676279234]}, "precision": 0.536144578313253, "recall": 0.4972067039106145}, "event": {"f1": 0.5028790786948176, "f1_ci": {"90": [0.4574887305511124, 0.5513362750160383], "95": [0.44581993761996164, 0.5625028357531761]}, "precision": 0.51171875, "recall": 0.49433962264150944}, "group": {"f1": 0.5598591549295774, "f1_ci": {"90": [0.5130891913483878, 0.6074147053457399], "95": [0.5018050541516246, 0.6181973581973583]}, "precision": 0.6186770428015564, "recall": 0.5112540192926045}, "location": {"f1": 0.6923076923076923, "f1_ci": {"90": [0.6291361251400163, 0.75], "95": [0.6172724125995154, 0.7622443181818181]}, "precision": 0.7346938775510204, "recall": 0.6545454545454545}, "person": {"f1": 0.8201193520886614, "f1_ci": {"90": [0.7918366950327573, 0.8450477632944151], "95": [0.7872476092967537, 0.8496363016720296]}, "precision": 0.8336221837088388, "recall": 0.8070469798657718}, "product": {"f1": 0.6985645933014354, "f1_ci": {"90": [0.6469248291571754, 0.744086649786838], "95": [0.6368046132971505, 0.7505999077065068]}, "precision": 0.7373737373737373, "recall": 0.6636363636363637}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6574551220340903, "micro/f1_ci": {"90": [0.6484148010152769, 0.6672289519134409], "95": [0.6470100684797441, 0.6689850350992637]}, "micro/recall": 0.6712534690101758, "micro/precision": 0.644212629008989, "macro/f1": 0.6124665667529737, "macro/f1_ci": {"90": [0.6027797907638927, 0.6224386923123064], "95": [0.600643831363655, 0.6236643933399094]}, "macro/recall": 0.625251837701222, "macro/precision": 0.6005167968535563, "per_entity_metric": {"corporation": {"f1": 0.5392156862745098, "f1_ci": {"90": [0.5150666283343305, 0.5627638588284978], "95": [0.5107747807572307, 0.5685865874978943]}, "precision": 0.5288461538461539, "recall": 0.55}, "creative_work": {"f1": 0.4760582928521859, "f1_ci": {"90": [0.44542457349745634, 0.508050611843474], "95": [0.43965273913172126, 0.5137357875658368]}, "precision": 0.4830985915492958, "recall": 0.4692202462380301}, "event": {"f1": 0.4673321234119782, "f1_ci": {"90": [0.4453263502657273, 0.4898926859987146], "95": [0.4407011814810304, 0.4935304881902431]}, "precision": 0.4660633484162896, "recall": 0.46860782529572337}, "group": {"f1": 0.6139798488664987, "f1_ci": {"90": [0.5937377152453256, 0.6348052094376245], "95": [0.5916896908608198, 0.6386072364652792]}, "precision": 0.5880579010856454, "recall": 0.642292490118577}, "location": {"f1": 0.6707399864222675, "f1_ci": {"90": [0.6421888503799826, 0.6973484858175715], "95": [0.6384158152719541, 0.702529512070608]}, "precision": 0.6525759577278731, "recall": 0.6899441340782123}, "person": {"f1": 0.8293212669683258, "f1_ci": {"90": [0.8181446413482045, 0.8403938359511686], "95": [0.8159141098754302, 0.8428604160939993]}, "precision": 0.8144329896907216, "recall": 0.8447640117994101}, "product": {"f1": 0.6906187624750498, "f1_ci": {"90": [0.6702170960229447, 0.7112006663611212], "95": [0.6659795602550325, 0.714153086982773]}, "precision": 0.6705426356589147, "recall": 0.7119341563786008}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7642760487144791, "micro/f1_ci": {}, "micro/recall": 0.7327451997924235, "micro/precision": 0.7986425339366516, "macro/f1": 0.7642760487144791, "macro/f1_ci": {}, "macro/recall": 0.7327451997924235, "macro/precision": 0.7986425339366516}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7881979839166384, "micro/f1_ci": {}, "micro/recall": 0.804787787672025, "micro/precision": 0.7722783264898457, "macro/f1": 0.7881979839166384, "macro/f1_ci": {}, "macro/recall": 0.804787787672025, "macro/precision": 0.7722783264898457}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|