model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-2021
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6404513989878424
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6443872176050568
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6365633672525439
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5910583983096561
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5928837696021392
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5900571634271187
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7770796974985457
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7818096687346365
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7724066150109865
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6335644937586686
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6805721096543504
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5926310326933056
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5914520478690088
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6370623744887871
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5535477989961968
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7436182019977802
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7990459153249851
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6953814218993254
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/roberta-large-tweetner7-2021
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6404513989878424
|
94 |
+
- Precision (micro): 0.6443872176050568
|
95 |
+
- Recall (micro): 0.6365633672525439
|
96 |
+
- F1 (macro): 0.5910583983096561
|
97 |
+
- Precision (macro): 0.5928837696021392
|
98 |
+
- Recall (macro): 0.5900571634271187
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5058236272878537
|
104 |
+
- creative_work: 0.43911917098445596
|
105 |
+
- event: 0.46597353497164457
|
106 |
+
- group: 0.6068318821165438
|
107 |
+
- location: 0.6398910823689584
|
108 |
+
- person: 0.8267511177347244
|
109 |
+
- product: 0.6530183727034121
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6310532748860292, 0.6500710194412829]
|
114 |
+
- 95%: [0.6296658889111393, 0.6521427599284435]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6310532748860292, 0.6500710194412829]
|
117 |
+
- 95%: [0.6296658889111393, 0.6521427599284435]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-2021/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-2021/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/roberta-large-tweetner7-2021")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: roberta-large
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-2021/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6360351058337637, "micro/f1_ci": {}, "micro/recall": 0.616, "micro/precision": 0.6574172892209178, "macro/f1": 0.5912051787344677, "macro/f1_ci": {}, "macro/recall": 0.5716765665918595, "macro/precision": 0.6145258341593257, "per_entity_metric": {"corporation": {"f1": 0.5235602094240838, "f1_ci": {}, "precision": 0.5617977528089888, "recall": 0.49019607843137253}, "creative_work": {"f1": 0.5, "f1_ci": {}, "precision": 0.48717948717948717, "recall": 0.5135135135135135}, "event": {"f1": 0.35684647302904565, "f1_ci": {}, "precision": 0.39090909090909093, "recall": 0.3282442748091603}, "group": {"f1": 0.627906976744186, "f1_ci": {}, "precision": 0.6650246305418719, "recall": 0.5947136563876652}, "location": {"f1": 0.6818181818181818, "f1_ci": {}, "precision": 0.75, "recall": 0.625}, "person": {"f1": 0.8301225919439579, "f1_ci": {}, "precision": 0.8229166666666666, "recall": 0.8374558303886925}, "product": {"f1": 0.6181818181818182, "f1_ci": {}, "precision": 0.6238532110091743, "recall": 0.6126126126126126}}}, "2021.test": {"micro/f1": 0.6404513989878424, "micro/f1_ci": {"90": [0.6310532748860292, 0.6500710194412829], "95": [0.6296658889111393, 0.6521427599284435]}, "micro/recall": 0.6365633672525439, "micro/precision": 0.6443872176050568, "macro/f1": 0.5910583983096561, "macro/f1_ci": {"90": [0.5809463231552521, 0.6010049606712689], "95": [0.5788166178408317, 0.6032882856914171]}, "macro/recall": 0.5900571634271187, "macro/precision": 0.5928837696021392, "per_entity_metric": {"corporation": {"f1": 0.5058236272878537, "f1_ci": {"90": [0.48221203045637623, 0.5303888996856597], "95": [0.4768192669028184, 0.5361739312316256]}, "precision": 0.5049833887043189, "recall": 0.5066666666666667}, "creative_work": {"f1": 0.43911917098445596, "f1_ci": {"90": [0.4088519263305804, 0.4698779572211306], "95": [0.4033908658729188, 0.47548628801170667]}, "precision": 0.41697416974169743, "recall": 0.4637482900136799}, "event": {"f1": 0.46597353497164457, "f1_ci": {"90": [0.4414376523975732, 0.48765845692109383], "95": [0.4374048509297999, 0.49298079426045754]}, "precision": 0.48475909537856443, "recall": 0.44858962693357596}, "group": {"f1": 0.6068318821165438, "f1_ci": {"90": [0.5857613197870366, 0.6284661621519472], "95": [0.5822767750520318, 0.6337291179191381]}, "precision": 0.6171662125340599, "recall": 0.5968379446640316}, "location": {"f1": 0.6398910823689584, "f1_ci": {"90": [0.61063908109445, 0.6675512121611009], "95": [0.6064278122897154, 0.6741361629127748]}, "precision": 0.6241699867197875, "recall": 0.6564245810055865}, "person": {"f1": 0.8267511177347244, "f1_ci": {"90": [0.8157005907020787, 0.8380098885018492], "95": [0.8137865601171665, 0.8400948145156062]}, "precision": 0.8354668674698795, "recall": 0.8182153392330384}, "product": {"f1": 0.6530183727034121, "f1_ci": {"90": [0.6302189400687924, 0.6751343003974581], "95": [0.6264020156559537, 0.6791711660773018]}, "precision": 0.6666666666666666, "recall": 0.6399176954732511}}}, "2020.test": {"micro/f1": 0.6335644937586686, "micro/f1_ci": {"90": [0.6120421464705215, 0.6525076828761172], "95": [0.6086564713285258, 0.6559915040520051]}, "micro/recall": 0.5926310326933056, "micro/precision": 0.6805721096543504, "macro/f1": 0.5914520478690088, "macro/f1_ci": {"90": [0.5672890790149243, 0.6111046076343697], "95": [0.5631922824822733, 0.615969012049981]}, "macro/recall": 0.5535477989961968, "macro/precision": 0.6370623744887871, "per_entity_metric": {"corporation": {"f1": 0.5322128851540617, "f1_ci": {"90": [0.4679528605099636, 0.5855111633372503], "95": [0.45919247230614296, 0.5964937200956938]}, "precision": 0.572289156626506, "recall": 0.4973821989528796}, "creative_work": {"f1": 0.4941176470588235, "f1_ci": {"90": [0.4324237140366173, 0.5483963133640553], "95": [0.4233767507552276, 0.5575498000792478]}, "precision": 0.5217391304347826, "recall": 0.4692737430167598}, "event": {"f1": 0.46613545816733065, "f1_ci": {"90": [0.41300613255759094, 0.5199418408061135], "95": [0.40350089295094027, 0.5281582054309327]}, "precision": 0.4936708860759494, "recall": 0.44150943396226416}, "group": {"f1": 0.5464684014869888, "f1_ci": {"90": [0.4933666798613359, 0.5976370403789758], "95": [0.4788116130430073, 0.610861672409387]}, "precision": 0.6475770925110133, "recall": 0.47266881028938906}, "location": {"f1": 0.63125, "f1_ci": {"90": [0.5671345820472707, 0.6885394482690307], "95": [0.5551672761749965, 0.7014767828550316]}, "precision": 0.6516129032258065, "recall": 0.6121212121212121}, "person": {"f1": 0.81326352530541, "f1_ci": {"90": [0.7841960889038811, 0.8395792418896547], "95": [0.7788274499501572, 0.8438129923423588]}, "precision": 0.8472727272727273, "recall": 0.7818791946308725}, "product": {"f1": 0.6567164179104477, "f1_ci": {"90": [0.6008587786259542, 0.7132317854013615], "95": [0.5929074717150218, 0.7208718442447583]}, "precision": 0.7252747252747253, "recall": 0.6}}}, "2021.test (span detection)": {"micro/f1": 0.7770796974985457, "micro/f1_ci": {}, "micro/recall": 0.7724066150109865, "micro/precision": 0.7818096687346365, "macro/f1": 0.7770796974985457, "macro/f1_ci": {}, "macro/recall": 0.7724066150109865, "macro/precision": 0.7818096687346365}, "2020.test (span detection)": {"micro/f1": 0.7436182019977802, "micro/f1_ci": {}, "micro/recall": 0.6953814218993254, "micro/precision": 0.7990459153249851, "macro/f1": 0.7436182019977802, "macro/f1_ci": {}, "macro/recall": 0.6953814218993254, "macro/precision": 0.7990459153249851}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6335644937586686, "micro/f1_ci": {"90": [0.6120421464705215, 0.6525076828761172], "95": [0.6086564713285258, 0.6559915040520051]}, "micro/recall": 0.5926310326933056, "micro/precision": 0.6805721096543504, "macro/f1": 0.5914520478690088, "macro/f1_ci": {"90": [0.5672890790149243, 0.6111046076343697], "95": [0.5631922824822733, 0.615969012049981]}, "macro/recall": 0.5535477989961968, "macro/precision": 0.6370623744887871, "per_entity_metric": {"corporation": {"f1": 0.5322128851540617, "f1_ci": {"90": [0.4679528605099636, 0.5855111633372503], "95": [0.45919247230614296, 0.5964937200956938]}, "precision": 0.572289156626506, "recall": 0.4973821989528796}, "creative_work": {"f1": 0.4941176470588235, "f1_ci": {"90": [0.4324237140366173, 0.5483963133640553], "95": [0.4233767507552276, 0.5575498000792478]}, "precision": 0.5217391304347826, "recall": 0.4692737430167598}, "event": {"f1": 0.46613545816733065, "f1_ci": {"90": [0.41300613255759094, 0.5199418408061135], "95": [0.40350089295094027, 0.5281582054309327]}, "precision": 0.4936708860759494, "recall": 0.44150943396226416}, "group": {"f1": 0.5464684014869888, "f1_ci": {"90": [0.4933666798613359, 0.5976370403789758], "95": [0.4788116130430073, 0.610861672409387]}, "precision": 0.6475770925110133, "recall": 0.47266881028938906}, "location": {"f1": 0.63125, "f1_ci": {"90": [0.5671345820472707, 0.6885394482690307], "95": [0.5551672761749965, 0.7014767828550316]}, "precision": 0.6516129032258065, "recall": 0.6121212121212121}, "person": {"f1": 0.81326352530541, "f1_ci": {"90": [0.7841960889038811, 0.8395792418896547], "95": [0.7788274499501572, 0.8438129923423588]}, "precision": 0.8472727272727273, "recall": 0.7818791946308725}, "product": {"f1": 0.6567164179104477, "f1_ci": {"90": [0.6008587786259542, 0.7132317854013615], "95": [0.5929074717150218, 0.7208718442447583]}, "precision": 0.7252747252747253, "recall": 0.6}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6404513989878424, "micro/f1_ci": {"90": [0.6310532748860292, 0.6500710194412829], "95": [0.6296658889111393, 0.6521427599284435]}, "micro/recall": 0.6365633672525439, "micro/precision": 0.6443872176050568, "macro/f1": 0.5910583983096561, "macro/f1_ci": {"90": [0.5809463231552521, 0.6010049606712689], "95": [0.5788166178408317, 0.6032882856914171]}, "macro/recall": 0.5900571634271187, "macro/precision": 0.5928837696021392, "per_entity_metric": {"corporation": {"f1": 0.5058236272878537, "f1_ci": {"90": [0.48221203045637623, 0.5303888996856597], "95": [0.4768192669028184, 0.5361739312316256]}, "precision": 0.5049833887043189, "recall": 0.5066666666666667}, "creative_work": {"f1": 0.43911917098445596, "f1_ci": {"90": [0.4088519263305804, 0.4698779572211306], "95": [0.4033908658729188, 0.47548628801170667]}, "precision": 0.41697416974169743, "recall": 0.4637482900136799}, "event": {"f1": 0.46597353497164457, "f1_ci": {"90": [0.4414376523975732, 0.48765845692109383], "95": [0.4374048509297999, 0.49298079426045754]}, "precision": 0.48475909537856443, "recall": 0.44858962693357596}, "group": {"f1": 0.6068318821165438, "f1_ci": {"90": [0.5857613197870366, 0.6284661621519472], "95": [0.5822767750520318, 0.6337291179191381]}, "precision": 0.6171662125340599, "recall": 0.5968379446640316}, "location": {"f1": 0.6398910823689584, "f1_ci": {"90": [0.61063908109445, 0.6675512121611009], "95": [0.6064278122897154, 0.6741361629127748]}, "precision": 0.6241699867197875, "recall": 0.6564245810055865}, "person": {"f1": 0.8267511177347244, "f1_ci": {"90": [0.8157005907020787, 0.8380098885018492], "95": [0.8137865601171665, 0.8400948145156062]}, "precision": 0.8354668674698795, "recall": 0.8182153392330384}, "product": {"f1": 0.6530183727034121, "f1_ci": {"90": [0.6302189400687924, 0.6751343003974581], "95": [0.6264020156559537, 0.6791711660773018]}, "precision": 0.6666666666666666, "recall": 0.6399176954732511}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7436182019977802, "micro/f1_ci": {}, "micro/recall": 0.6953814218993254, "micro/precision": 0.7990459153249851, "macro/f1": 0.7436182019977802, "macro/f1_ci": {}, "macro/recall": 0.6953814218993254, "macro/precision": 0.7990459153249851}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7770796974985457, "micro/f1_ci": {}, "micro/recall": 0.7724066150109865, "micro/precision": 0.7818096687346365, "macro/f1": 0.7770796974985457, "macro/f1_ci": {}, "macro/recall": 0.7724066150109865, "macro/precision": 0.7818096687346365}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|