model update
Browse files- README.md +168 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-large-tweetner7-2020-selflabel2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7
|
16 |
+
type: tner/tweetner7
|
17 |
+
args: tner/tweetner7
|
18 |
+
metrics:
|
19 |
+
- name: F1 (test_2021)
|
20 |
+
type: f1
|
21 |
+
value: 0.6451758087201125
|
22 |
+
- name: Precision (test_2021)
|
23 |
+
type: precision
|
24 |
+
value: 0.6282458639202366
|
25 |
+
- name: Recall (test_2021)
|
26 |
+
type: recall
|
27 |
+
value: 0.6630434782608695
|
28 |
+
- name: Macro F1 (test_2021)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5945137835095485
|
31 |
+
- name: Macro Precision (test_2021)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5791991181065553
|
34 |
+
- name: Macro Recall (test_2021)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6195808065595296
|
37 |
+
- name: Entity Span F1 (test_2021)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7849668054461573
|
40 |
+
- name: Entity Span Precision (test_2020)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7643256272597787
|
43 |
+
- name: Entity Span Recall (test_2021)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8067537874407309
|
46 |
+
- name: F1 (test_2020)
|
47 |
+
type: f1
|
48 |
+
value: 0.6605206073752712
|
49 |
+
- name: Precision (test_2020)
|
50 |
+
type: precision
|
51 |
+
value: 0.6916524701873935
|
52 |
+
- name: Recall (test_2020)
|
53 |
+
type: recall
|
54 |
+
value: 0.6320705760249092
|
55 |
+
- name: Macro F1 (test_2020)
|
56 |
+
type: f1_macro
|
57 |
+
value: 0.6182768841282975
|
58 |
+
- name: Macro Precision (test_2020)
|
59 |
+
type: precision_macro
|
60 |
+
value: 0.646958757311601
|
61 |
+
- name: Macro Recall (test_2020)
|
62 |
+
type: recall_macro
|
63 |
+
value: 0.600022393469146
|
64 |
+
- name: Entity Span F1 (test_2020)
|
65 |
+
type: f1_entity_span
|
66 |
+
value: 0.769397721106891
|
67 |
+
- name: Entity Span Precision (test_2020)
|
68 |
+
type: precision_entity_span
|
69 |
+
value: 0.8061398521887436
|
70 |
+
- name: Entity Span Recall (test_2020)
|
71 |
+
type: recall_entity_span
|
72 |
+
value: 0.7358588479501816
|
73 |
+
|
74 |
+
pipeline_tag: token-classification
|
75 |
+
widget:
|
76 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
77 |
+
example_title: "NER Example 1"
|
78 |
+
---
|
79 |
+
# tner/roberta-large-tweetner7-2020-selflabel2021-concat
|
80 |
+
|
81 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the
|
82 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train` split). This model is fine-tuned on self-labeled dataset which is the `extra_2021` split of the [tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) annotated by [tner/roberta-large](https://huggingface.co/tner/tner/roberta-large-tweetner7-2020)). Please check [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper#model-fine-tuning-self-labeling) for more detail of reproducing the model.
|
83 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
84 |
+
for more detail). It achieves the following results on the test set of 2021:
|
85 |
+
- F1 (micro): 0.6451758087201125
|
86 |
+
- Precision (micro): 0.6282458639202366
|
87 |
+
- Recall (micro): 0.6630434782608695
|
88 |
+
- F1 (macro): 0.5945137835095485
|
89 |
+
- Precision (macro): 0.5791991181065553
|
90 |
+
- Recall (macro): 0.6195808065595296
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
95 |
+
- corporation: 0.5067218200620476
|
96 |
+
- creative_work: 0.45376220562894887
|
97 |
+
- event: 0.4452749599572877
|
98 |
+
- group: 0.6063348416289593
|
99 |
+
- location: 0.6619263089851325
|
100 |
+
- person: 0.835890955046037
|
101 |
+
- product: 0.651685393258427
|
102 |
+
|
103 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
104 |
+
- F1 (micro):
|
105 |
+
- 90%: [0.6360452531843157, 0.6546242674951402]
|
106 |
+
- 95%: [0.6344128889037165, 0.6562435584441533]
|
107 |
+
- F1 (macro):
|
108 |
+
- 90%: [0.6360452531843157, 0.6546242674951402]
|
109 |
+
- 95%: [0.6344128889037165, 0.6562435584441533]
|
110 |
+
|
111 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-concat/raw/main/eval/metric.json)
|
112 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-concat/raw/main/eval/metric_span.json).
|
113 |
+
|
114 |
+
### Usage
|
115 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
116 |
+
```shell
|
117 |
+
pip install tner
|
118 |
+
```
|
119 |
+
and activate model as below.
|
120 |
+
```python
|
121 |
+
from tner import TransformersNER
|
122 |
+
model = TransformersNER("tner/roberta-large-tweetner7-2020-selflabel2021-concat")
|
123 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
124 |
+
```
|
125 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- dataset: ['tner/tweetner7']
|
131 |
+
- dataset_split: train
|
132 |
+
- dataset_name: None
|
133 |
+
- local_dataset: {'train': 'tweet_ner/2020_2021.extra.tner/roberta-large-2020.txt', 'validation': 'tweet_ner/2020.dev.txt'}
|
134 |
+
- model: roberta-large
|
135 |
+
- crf: True
|
136 |
+
- max_length: 128
|
137 |
+
- epoch: 30
|
138 |
+
- batch_size: 32
|
139 |
+
- lr: 1e-05
|
140 |
+
- random_seed: 0
|
141 |
+
- gradient_accumulation_steps: 1
|
142 |
+
- weight_decay: 1e-07
|
143 |
+
- lr_warmup_step_ratio: 0.3
|
144 |
+
- max_grad_norm: 1
|
145 |
+
|
146 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-concat/raw/main/trainer_config.json).
|
147 |
+
|
148 |
+
### Reference
|
149 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
150 |
+
|
151 |
+
```
|
152 |
+
|
153 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
154 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
155 |
+
author = "Ushio, Asahi and
|
156 |
+
Camacho-Collados, Jose",
|
157 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
158 |
+
month = apr,
|
159 |
+
year = "2021",
|
160 |
+
address = "Online",
|
161 |
+
publisher = "Association for Computational Linguistics",
|
162 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
163 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
164 |
+
pages = "53--62",
|
165 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
166 |
+
}
|
167 |
+
|
168 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.6461038961038961, "micro/f1_ci": {}, "micro/recall": 0.6238244514106583, "micro/precision": 0.67003367003367, "macro/f1": 0.587322338466695, "macro/f1_ci": {}, "macro/recall": 0.5756381956969621, "macro/precision": 0.6090469200966296, "per_entity_metric": {"corporation": {"f1": 0.484375, "f1_ci": {}, "precision": 0.5138121546961326, "recall": 0.458128078817734}, "creative_work": {"f1": 0.511520737327189, "f1_ci": {}, "precision": 0.4911504424778761, "recall": 0.5336538461538461}, "event": {"f1": 0.38613861386138615, "f1_ci": {}, "precision": 0.527027027027027, "recall": 0.3046875}, "group": {"f1": 0.5733333333333334, "f1_ci": {}, "precision": 0.57847533632287, "recall": 0.5682819383259912}, "location": {"f1": 0.640625, "f1_ci": {}, "precision": 0.6059113300492611, "recall": 0.6795580110497238}, "person": {"f1": 0.8709122203098106, "f1_ci": {}, "precision": 0.8971631205673759, "recall": 0.8461538461538461}, "product": {"f1": 0.6443514644351463, "f1_ci": {}, "precision": 0.6497890295358649, "recall": 0.6390041493775933}}}, "2021.test": {"micro/f1": 0.6451758087201125, "micro/f1_ci": {"90": [0.6360452531843157, 0.6546242674951402], "95": [0.6344128889037165, 0.6562435584441533]}, "micro/recall": 0.6630434782608695, "micro/precision": 0.6282458639202366, "macro/f1": 0.5945137835095485, "macro/f1_ci": {"90": [0.5849625646474219, 0.6048099476423717], "95": [0.5832263131312113, 0.6064180014512437]}, "macro/recall": 0.6195808065595296, "macro/precision": 0.5791991181065553, "per_entity_metric": {"corporation": {"f1": 0.5067218200620476, "f1_ci": {"90": [0.482720115378613, 0.5318353967881462], "95": [0.4796950147983722, 0.5369819879159188]}, "precision": 0.4738878143133462, "recall": 0.5444444444444444}, "creative_work": {"f1": 0.45376220562894887, "f1_ci": {"90": [0.42664800694587557, 0.48082929944314123], "95": [0.42158048043728424, 0.4846494398622172]}, "precision": 0.3910891089108911, "recall": 0.5403556771545828}, "event": {"f1": 0.4452749599572877, "f1_ci": {"90": [0.41903187721369545, 0.4705294264916067], "95": [0.41504947523868935, 0.4746242629321899]}, "precision": 0.5387596899224806, "recall": 0.3794358507734304}, "group": {"f1": 0.6063348416289593, "f1_ci": {"90": [0.5861107400130976, 0.6279132370043825], "95": [0.5830224656689539, 0.6322202313625416]}, "precision": 0.5951776649746193, "recall": 0.6179183135704874}, "location": {"f1": 0.6619263089851325, "f1_ci": {"90": [0.6324935407210904, 0.6882328863476124], "95": [0.6253949479866915, 0.6927306998069366]}, "precision": 0.6161251504211793, "recall": 0.7150837988826816}, "person": {"f1": 0.835890955046037, "f1_ci": {"90": [0.8259559078534311, 0.8463653140397381], "95": [0.8236693872632049, 0.848508779376511]}, "precision": 0.8188892819243013, "recall": 0.8536135693215339}, "product": {"f1": 0.651685393258427, "f1_ci": {"90": [0.6290720140515222, 0.6729078211863003], "95": [0.6251710926532523, 0.6767235821801794]}, "precision": 0.6204651162790698, "recall": 0.6862139917695473}}}, "2020.test": {"micro/f1": 0.6605206073752712, "micro/f1_ci": {"90": [0.6408255159753993, 0.6793274637933173], "95": [0.6373893291997992, 0.6825239933971441]}, "micro/recall": 0.6320705760249092, "micro/precision": 0.6916524701873935, "macro/f1": 0.6182768841282975, "macro/f1_ci": {"90": [0.5961031178968297, 0.6385985065596177], "95": [0.5914673366772406, 0.6421666965178469]}, "macro/recall": 0.600022393469146, "macro/precision": 0.646958757311601, "per_entity_metric": {"corporation": {"f1": 0.5822784810126582, "f1_ci": {"90": [0.5256752905886762, 0.6318421628123121], "95": [0.5128, 0.6414092076062835]}, "precision": 0.5637254901960784, "recall": 0.6020942408376964}, "creative_work": {"f1": 0.5343915343915344, "f1_ci": {"90": [0.476412981770012, 0.588596538853071], "95": [0.4636852685629959, 0.5979764281221802]}, "precision": 0.507537688442211, "recall": 0.5642458100558659}, "event": {"f1": 0.4439252336448598, "f1_ci": {"90": [0.38862436460968, 0.497920986683701], "95": [0.3779821592181615, 0.5074727486164683]}, "precision": 0.5828220858895705, "recall": 0.3584905660377358}, "group": {"f1": 0.597864768683274, "f1_ci": {"90": [0.5551718002208861, 0.6446087202184763], "95": [0.548585759887216, 0.6524932368209403]}, "precision": 0.6693227091633466, "recall": 0.5401929260450161}, "location": {"f1": 0.6808510638297872, "f1_ci": {"90": [0.6142731829573934, 0.743047103899031], "95": [0.6024013007045483, 0.7507189002768739]}, "precision": 0.6829268292682927, "recall": 0.6787878787878788}, "person": {"f1": 0.8343347639484978, "f1_ci": {"90": [0.8076569065611846, 0.8573930598247411], "95": [0.8034319572294566, 0.8639877286061661]}, "precision": 0.8541300527240774, "recall": 0.8154362416107382}, "product": {"f1": 0.6542923433874709, "f1_ci": {"90": [0.6053549332303825, 0.7005813660209848], "95": [0.5979308671922375, 0.7089777612241414]}, "precision": 0.6682464454976303, "recall": 0.6409090909090909}}}, "2021.test (span detection)": {"micro/f1": 0.7849668054461573, "micro/f1_ci": {}, "micro/recall": 0.8067537874407309, "micro/precision": 0.7643256272597787, "macro/f1": 0.7849668054461573, "macro/f1_ci": {}, "macro/recall": 0.8067537874407309, "macro/precision": 0.7643256272597787}, "2020.test (span detection)": {"micro/f1": 0.769397721106891, "micro/f1_ci": {}, "micro/recall": 0.7358588479501816, "micro/precision": 0.8061398521887436, "macro/f1": 0.769397721106891, "macro/f1_ci": {}, "macro/recall": 0.7358588479501816, "macro/precision": 0.8061398521887436}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6605206073752712, "micro/f1_ci": {"90": [0.6408255159753993, 0.6793274637933173], "95": [0.6373893291997992, 0.6825239933971441]}, "micro/recall": 0.6320705760249092, "micro/precision": 0.6916524701873935, "macro/f1": 0.6182768841282975, "macro/f1_ci": {"90": [0.5961031178968297, 0.6385985065596177], "95": [0.5914673366772406, 0.6421666965178469]}, "macro/recall": 0.600022393469146, "macro/precision": 0.646958757311601, "per_entity_metric": {"corporation": {"f1": 0.5822784810126582, "f1_ci": {"90": [0.5256752905886762, 0.6318421628123121], "95": [0.5128, 0.6414092076062835]}, "precision": 0.5637254901960784, "recall": 0.6020942408376964}, "creative_work": {"f1": 0.5343915343915344, "f1_ci": {"90": [0.476412981770012, 0.588596538853071], "95": [0.4636852685629959, 0.5979764281221802]}, "precision": 0.507537688442211, "recall": 0.5642458100558659}, "event": {"f1": 0.4439252336448598, "f1_ci": {"90": [0.38862436460968, 0.497920986683701], "95": [0.3779821592181615, 0.5074727486164683]}, "precision": 0.5828220858895705, "recall": 0.3584905660377358}, "group": {"f1": 0.597864768683274, "f1_ci": {"90": [0.5551718002208861, 0.6446087202184763], "95": [0.548585759887216, 0.6524932368209403]}, "precision": 0.6693227091633466, "recall": 0.5401929260450161}, "location": {"f1": 0.6808510638297872, "f1_ci": {"90": [0.6142731829573934, 0.743047103899031], "95": [0.6024013007045483, 0.7507189002768739]}, "precision": 0.6829268292682927, "recall": 0.6787878787878788}, "person": {"f1": 0.8343347639484978, "f1_ci": {"90": [0.8076569065611846, 0.8573930598247411], "95": [0.8034319572294566, 0.8639877286061661]}, "precision": 0.8541300527240774, "recall": 0.8154362416107382}, "product": {"f1": 0.6542923433874709, "f1_ci": {"90": [0.6053549332303825, 0.7005813660209848], "95": [0.5979308671922375, 0.7089777612241414]}, "precision": 0.6682464454976303, "recall": 0.6409090909090909}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6451758087201125, "micro/f1_ci": {"90": [0.6360452531843157, 0.6546242674951402], "95": [0.6344128889037165, 0.6562435584441533]}, "micro/recall": 0.6630434782608695, "micro/precision": 0.6282458639202366, "macro/f1": 0.5945137835095485, "macro/f1_ci": {"90": [0.5849625646474219, 0.6048099476423717], "95": [0.5832263131312113, 0.6064180014512437]}, "macro/recall": 0.6195808065595296, "macro/precision": 0.5791991181065553, "per_entity_metric": {"corporation": {"f1": 0.5067218200620476, "f1_ci": {"90": [0.482720115378613, 0.5318353967881462], "95": [0.4796950147983722, 0.5369819879159188]}, "precision": 0.4738878143133462, "recall": 0.5444444444444444}, "creative_work": {"f1": 0.45376220562894887, "f1_ci": {"90": [0.42664800694587557, 0.48082929944314123], "95": [0.42158048043728424, 0.4846494398622172]}, "precision": 0.3910891089108911, "recall": 0.5403556771545828}, "event": {"f1": 0.4452749599572877, "f1_ci": {"90": [0.41903187721369545, 0.4705294264916067], "95": [0.41504947523868935, 0.4746242629321899]}, "precision": 0.5387596899224806, "recall": 0.3794358507734304}, "group": {"f1": 0.6063348416289593, "f1_ci": {"90": [0.5861107400130976, 0.6279132370043825], "95": [0.5830224656689539, 0.6322202313625416]}, "precision": 0.5951776649746193, "recall": 0.6179183135704874}, "location": {"f1": 0.6619263089851325, "f1_ci": {"90": [0.6324935407210904, 0.6882328863476124], "95": [0.6253949479866915, 0.6927306998069366]}, "precision": 0.6161251504211793, "recall": 0.7150837988826816}, "person": {"f1": 0.835890955046037, "f1_ci": {"90": [0.8259559078534311, 0.8463653140397381], "95": [0.8236693872632049, 0.848508779376511]}, "precision": 0.8188892819243013, "recall": 0.8536135693215339}, "product": {"f1": 0.651685393258427, "f1_ci": {"90": [0.6290720140515222, 0.6729078211863003], "95": [0.6251710926532523, 0.6767235821801794]}, "precision": 0.6204651162790698, "recall": 0.6862139917695473}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.769397721106891, "micro/f1_ci": {}, "micro/recall": 0.7358588479501816, "micro/precision": 0.8061398521887436, "macro/f1": 0.769397721106891, "macro/f1_ci": {}, "macro/recall": 0.7358588479501816, "macro/precision": 0.8061398521887436}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7849668054461573, "micro/f1_ci": {}, "micro/recall": 0.8067537874407309, "micro/precision": 0.7643256272597787, "macro/f1": 0.7849668054461573, "macro/f1_ci": {}, "macro/recall": 0.8067537874407309, "macro/precision": 0.7643256272597787}
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train", "dataset_name": null, "local_dataset": {"train": "tweet_ner/2020_2021.extra.tner/roberta-large-2020.txt", "validation": "tweet_ner/2020.dev.txt"}, "model": "roberta-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|