Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`roberta-large`](https://huggingface.co/roberta-large) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).
If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!
@@ -5,49 +5,49 @@ metrics:
|
|
5 |
- f1
|
6 |
- precision
|
7 |
- recall
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: tner/roberta-large-bc5cdr
|
10 |
results:
|
11 |
- task:
|
12 |
-
name: Token Classification
|
13 |
type: token-classification
|
|
|
14 |
dataset:
|
15 |
name: tner/bc5cdr
|
16 |
type: tner/bc5cdr
|
17 |
args: tner/bc5cdr
|
18 |
metrics:
|
19 |
-
-
|
20 |
-
type: f1
|
21 |
value: 0.8840696387239609
|
22 |
-
|
23 |
-
|
24 |
value: 0.8728266269249876
|
25 |
-
|
26 |
-
|
27 |
value: 0.8956060760526048
|
28 |
-
|
29 |
-
|
30 |
value: 0.8797360472482783
|
31 |
-
|
32 |
-
|
33 |
value: 0.8684274142690976
|
34 |
-
|
35 |
-
|
36 |
value: 0.8913672531528037
|
37 |
-
|
38 |
-
|
39 |
value: 0.886283586595552
|
40 |
-
|
41 |
-
|
42 |
value: 0.8750124192747144
|
43 |
-
|
44 |
-
|
45 |
value: 0.8978489142624121
|
46 |
-
|
47 |
-
pipeline_tag: token-classification
|
48 |
-
widget:
|
49 |
-
- text: "Jacob Collier is a Grammy awarded artist from England."
|
50 |
-
example_title: "NER Example 1"
|
51 |
---
|
52 |
# tner/roberta-large-bc5cdr
|
53 |
|
|
|
5 |
- f1
|
6 |
- precision
|
7 |
- recall
|
8 |
+
pipeline_tag: token-classification
|
9 |
+
widget:
|
10 |
+
- text: Jacob Collier is a Grammy awarded artist from England.
|
11 |
+
example_title: NER Example 1
|
12 |
+
base_model: roberta-large
|
13 |
model-index:
|
14 |
- name: tner/roberta-large-bc5cdr
|
15 |
results:
|
16 |
- task:
|
|
|
17 |
type: token-classification
|
18 |
+
name: Token Classification
|
19 |
dataset:
|
20 |
name: tner/bc5cdr
|
21 |
type: tner/bc5cdr
|
22 |
args: tner/bc5cdr
|
23 |
metrics:
|
24 |
+
- type: f1
|
|
|
25 |
value: 0.8840696387239609
|
26 |
+
name: F1
|
27 |
+
- type: precision
|
28 |
value: 0.8728266269249876
|
29 |
+
name: Precision
|
30 |
+
- type: recall
|
31 |
value: 0.8956060760526048
|
32 |
+
name: Recall
|
33 |
+
- type: f1_macro
|
34 |
value: 0.8797360472482783
|
35 |
+
name: F1 (macro)
|
36 |
+
- type: precision_macro
|
37 |
value: 0.8684274142690976
|
38 |
+
name: Precision (macro)
|
39 |
+
- type: recall_macro
|
40 |
value: 0.8913672531528037
|
41 |
+
name: Recall (macro)
|
42 |
+
- type: f1_entity_span
|
43 |
value: 0.886283586595552
|
44 |
+
name: F1 (entity span)
|
45 |
+
- type: precision_entity_span
|
46 |
value: 0.8750124192747144
|
47 |
+
name: Precision (entity span)
|
48 |
+
- type: recall_entity_span
|
49 |
value: 0.8978489142624121
|
50 |
+
name: Recall (entity span)
|
|
|
|
|
|
|
|
|
51 |
---
|
52 |
# tner/roberta-large-bc5cdr
|
53 |
|