model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/roberta-base-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6515831894070236
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6488190781930749
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6543709528214616
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6081318073591985
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6024892144112918
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6155807376978756
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7893373251194657
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7859435909195138
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7927604949693535
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6531839300355288
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6899538106235565
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6201349247535028
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6166186507300974
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6523781324413148
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5860926262979317
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7523236741388737
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7949162333911034
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7140633108458744
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/roberta-base-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6515831894070236
|
94 |
+
- Precision (micro): 0.6488190781930749
|
95 |
+
- Recall (micro): 0.6543709528214616
|
96 |
+
- F1 (macro): 0.6081318073591985
|
97 |
+
- Precision (macro): 0.6024892144112918
|
98 |
+
- Recall (macro): 0.6155807376978756
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5174234424498415
|
104 |
+
- creative_work: 0.466403162055336
|
105 |
+
- event: 0.46727272727272723
|
106 |
+
- group: 0.6071197411003236
|
107 |
+
- location: 0.6832786885245901
|
108 |
+
- person: 0.8377301195672804
|
109 |
+
- product: 0.6776947705442904
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6426248846161623, 0.6611146727643068]
|
114 |
+
- 95%: [0.6408583849998567, 0.6629609445072536]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6426248846161623, 0.6611146727643068]
|
117 |
+
- 95%: [0.6408583849998567, 0.6629609445072536]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-base-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/roberta-base-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/roberta-base-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: roberta-base
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-base-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6469689251146206, "micro/f1_ci": {}, "micro/recall": 0.635, "micro/precision": 0.6593977154724818, "macro/f1": 0.6014288931166422, "macro/f1_ci": {}, "macro/recall": 0.5903596479194196, "macro/precision": 0.6143183232533814, "per_entity_metric": {"corporation": {"f1": 0.6019417475728156, "f1_ci": {}, "precision": 0.5961538461538461, "recall": 0.6078431372549019}, "creative_work": {"f1": 0.47887323943661975, "f1_ci": {}, "precision": 0.5, "recall": 0.4594594594594595}, "event": {"f1": 0.41767068273092367, "f1_ci": {}, "precision": 0.4406779661016949, "recall": 0.3969465648854962}, "group": {"f1": 0.631578947368421, "f1_ci": {}, "precision": 0.62882096069869, "recall": 0.6343612334801763}, "location": {"f1": 0.6122448979591836, "f1_ci": {}, "precision": 0.6, "recall": 0.625}, "person": {"f1": 0.8366247755834828, "f1_ci": {}, "precision": 0.8503649635036497, "recall": 0.823321554770318}, "product": {"f1": 0.6310679611650485, "f1_ci": {}, "precision": 0.6842105263157895, "recall": 0.5855855855855856}}}, "2021.test": {"micro/f1": 0.6515831894070236, "micro/f1_ci": {"90": [0.6426248846161623, 0.6611146727643068], "95": [0.6408583849998567, 0.6629609445072536]}, "micro/recall": 0.6543709528214616, "micro/precision": 0.6488190781930749, "macro/f1": 0.6081318073591985, "macro/f1_ci": {"90": [0.5982720247328263, 0.6181304060646944], "95": [0.5956407088917159, 0.6196130125852912]}, "macro/recall": 0.6155807376978756, "macro/precision": 0.6024892144112918, "per_entity_metric": {"corporation": {"f1": 0.5174234424498415, "f1_ci": {"90": [0.4936648515870705, 0.5437348601262041], "95": [0.4885022949243286, 0.5471504446094865]}, "precision": 0.49295774647887325, "recall": 0.5444444444444444}, "creative_work": {"f1": 0.466403162055336, "f1_ci": {"90": [0.4365426214916792, 0.49570670195121297], "95": [0.430553631074086, 0.5016692736109198]}, "precision": 0.4498094027954257, "recall": 0.4842681258549932}, "event": {"f1": 0.46727272727272723, "f1_ci": {"90": [0.4454429687968715, 0.4903171853702863], "95": [0.44099256614662297, 0.4949513525562855]}, "precision": 0.46684831970935514, "recall": 0.467697907188353}, "group": {"f1": 0.6071197411003236, "f1_ci": {"90": [0.5861576908243826, 0.6289925904123155], "95": [0.5836863413397794, 0.6323354921624595]}, "precision": 0.5966921119592875, "recall": 0.6179183135704874}, "location": {"f1": 0.6832786885245901, "f1_ci": {"90": [0.6571720974465681, 0.7109068486625629], "95": [0.6508663190665896, 0.7162931067002565]}, "precision": 0.6440049443757726, "recall": 0.7276536312849162}, "person": {"f1": 0.8377301195672804, "f1_ci": {"90": [0.8276980959235751, 0.8485767478830628], "95": [0.8260255921110556, 0.8508092332281014]}, "precision": 0.8631208447399296, "recall": 0.8137905604719764}, "product": {"f1": 0.6776947705442904, "f1_ci": {"90": [0.6553902251490492, 0.699632094409221], "95": [0.6517642249373523, 0.7046841960928648]}, "precision": 0.7039911308203991, "recall": 0.6532921810699589}}}, "2020.test": {"micro/f1": 0.6531839300355288, "micro/f1_ci": {"90": [0.6331939425228015, 0.6709196392454311], "95": [0.6287463050212823, 0.6742363307437226]}, "micro/recall": 0.6201349247535028, "micro/precision": 0.6899538106235565, "macro/f1": 0.6166186507300974, "macro/f1_ci": {"90": [0.594157548648219, 0.6362144855158252], "95": [0.5904501135575192, 0.639776197480569]}, "macro/recall": 0.5860926262979317, "macro/precision": 0.6523781324413148, "per_entity_metric": {"corporation": {"f1": 0.6194225721784777, "f1_ci": {"90": [0.5565017746228926, 0.6733323349589473], "95": [0.5479085471734517, 0.6820512820512821]}, "precision": 0.6210526315789474, "recall": 0.6178010471204188}, "creative_work": {"f1": 0.4894259818731118, "f1_ci": {"90": [0.4270354135925701, 0.545507399577167], "95": [0.41717142698274423, 0.5555627705627706]}, "precision": 0.5328947368421053, "recall": 0.45251396648044695}, "event": {"f1": 0.45136186770428016, "f1_ci": {"90": [0.3978736734522443, 0.501874083251449], "95": [0.3891742854740079, 0.510803537621031]}, "precision": 0.46586345381526106, "recall": 0.4377358490566038}, "group": {"f1": 0.5658362989323844, "f1_ci": {"90": [0.5151382476251127, 0.61462698148764], "95": [0.5076307180164151, 0.626772526987192]}, "precision": 0.6334661354581673, "recall": 0.5112540192926045}, "location": {"f1": 0.6894409937888198, "f1_ci": {"90": [0.6274217149546386, 0.7440886398547689], "95": [0.6148768819473758, 0.7561225667461723]}, "precision": 0.7070063694267515, "recall": 0.6727272727272727}, "person": {"f1": 0.8275261324041812, "f1_ci": {"90": [0.7993567425754086, 0.8511074607796776], "95": [0.7958273985244123, 0.8545669887000585]}, "precision": 0.8605072463768116, "recall": 0.7969798657718121}, "product": {"f1": 0.6733167082294264, "f1_ci": {"90": [0.6190924641557551, 0.723014061091403], "95": [0.6093323046153235, 0.7345134333722708]}, "precision": 0.7458563535911602, "recall": 0.6136363636363636}}}, "2021.test (span detection)": {"micro/f1": 0.7893373251194657, "micro/f1_ci": {}, "micro/recall": 0.7927604949693535, "micro/precision": 0.7859435909195138, "macro/f1": 0.7893373251194657, "macro/f1_ci": {}, "macro/recall": 0.7927604949693535, "macro/precision": 0.7859435909195138}, "2020.test (span detection)": {"micro/f1": 0.7523236741388737, "micro/f1_ci": {}, "micro/recall": 0.7140633108458744, "micro/precision": 0.7949162333911034, "macro/f1": 0.7523236741388737, "macro/f1_ci": {}, "macro/recall": 0.7140633108458744, "macro/precision": 0.7949162333911034}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6531839300355288, "micro/f1_ci": {"90": [0.6331939425228015, 0.6709196392454311], "95": [0.6287463050212823, 0.6742363307437226]}, "micro/recall": 0.6201349247535028, "micro/precision": 0.6899538106235565, "macro/f1": 0.6166186507300974, "macro/f1_ci": {"90": [0.594157548648219, 0.6362144855158252], "95": [0.5904501135575192, 0.639776197480569]}, "macro/recall": 0.5860926262979317, "macro/precision": 0.6523781324413148, "per_entity_metric": {"corporation": {"f1": 0.6194225721784777, "f1_ci": {"90": [0.5565017746228926, 0.6733323349589473], "95": [0.5479085471734517, 0.6820512820512821]}, "precision": 0.6210526315789474, "recall": 0.6178010471204188}, "creative_work": {"f1": 0.4894259818731118, "f1_ci": {"90": [0.4270354135925701, 0.545507399577167], "95": [0.41717142698274423, 0.5555627705627706]}, "precision": 0.5328947368421053, "recall": 0.45251396648044695}, "event": {"f1": 0.45136186770428016, "f1_ci": {"90": [0.3978736734522443, 0.501874083251449], "95": [0.3891742854740079, 0.510803537621031]}, "precision": 0.46586345381526106, "recall": 0.4377358490566038}, "group": {"f1": 0.5658362989323844, "f1_ci": {"90": [0.5151382476251127, 0.61462698148764], "95": [0.5076307180164151, 0.626772526987192]}, "precision": 0.6334661354581673, "recall": 0.5112540192926045}, "location": {"f1": 0.6894409937888198, "f1_ci": {"90": [0.6274217149546386, 0.7440886398547689], "95": [0.6148768819473758, 0.7561225667461723]}, "precision": 0.7070063694267515, "recall": 0.6727272727272727}, "person": {"f1": 0.8275261324041812, "f1_ci": {"90": [0.7993567425754086, 0.8511074607796776], "95": [0.7958273985244123, 0.8545669887000585]}, "precision": 0.8605072463768116, "recall": 0.7969798657718121}, "product": {"f1": 0.6733167082294264, "f1_ci": {"90": [0.6190924641557551, 0.723014061091403], "95": [0.6093323046153235, 0.7345134333722708]}, "precision": 0.7458563535911602, "recall": 0.6136363636363636}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6515831894070236, "micro/f1_ci": {"90": [0.6426248846161623, 0.6611146727643068], "95": [0.6408583849998567, 0.6629609445072536]}, "micro/recall": 0.6543709528214616, "micro/precision": 0.6488190781930749, "macro/f1": 0.6081318073591985, "macro/f1_ci": {"90": [0.5982720247328263, 0.6181304060646944], "95": [0.5956407088917159, 0.6196130125852912]}, "macro/recall": 0.6155807376978756, "macro/precision": 0.6024892144112918, "per_entity_metric": {"corporation": {"f1": 0.5174234424498415, "f1_ci": {"90": [0.4936648515870705, 0.5437348601262041], "95": [0.4885022949243286, 0.5471504446094865]}, "precision": 0.49295774647887325, "recall": 0.5444444444444444}, "creative_work": {"f1": 0.466403162055336, "f1_ci": {"90": [0.4365426214916792, 0.49570670195121297], "95": [0.430553631074086, 0.5016692736109198]}, "precision": 0.4498094027954257, "recall": 0.4842681258549932}, "event": {"f1": 0.46727272727272723, "f1_ci": {"90": [0.4454429687968715, 0.4903171853702863], "95": [0.44099256614662297, 0.4949513525562855]}, "precision": 0.46684831970935514, "recall": 0.467697907188353}, "group": {"f1": 0.6071197411003236, "f1_ci": {"90": [0.5861576908243826, 0.6289925904123155], "95": [0.5836863413397794, 0.6323354921624595]}, "precision": 0.5966921119592875, "recall": 0.6179183135704874}, "location": {"f1": 0.6832786885245901, "f1_ci": {"90": [0.6571720974465681, 0.7109068486625629], "95": [0.6508663190665896, 0.7162931067002565]}, "precision": 0.6440049443757726, "recall": 0.7276536312849162}, "person": {"f1": 0.8377301195672804, "f1_ci": {"90": [0.8276980959235751, 0.8485767478830628], "95": [0.8260255921110556, 0.8508092332281014]}, "precision": 0.8631208447399296, "recall": 0.8137905604719764}, "product": {"f1": 0.6776947705442904, "f1_ci": {"90": [0.6553902251490492, 0.699632094409221], "95": [0.6517642249373523, 0.7046841960928648]}, "precision": 0.7039911308203991, "recall": 0.6532921810699589}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7523236741388737, "micro/f1_ci": {}, "micro/recall": 0.7140633108458744, "micro/precision": 0.7949162333911034, "macro/f1": 0.7523236741388737, "macro/f1_ci": {}, "macro/recall": 0.7140633108458744, "macro/precision": 0.7949162333911034}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7893373251194657, "micro/f1_ci": {}, "micro/recall": 0.7927604949693535, "micro/precision": 0.7859435909195138, "macro/f1": 0.7893373251194657, "macro/f1_ci": {}, "macro/recall": 0.7927604949693535, "macro/precision": 0.7859435909195138}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "roberta-base", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|