model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-large-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6641431520991053
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6588529813381885
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6695189639222942
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6165782134695219
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.6102975783874098
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6256153624327598
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7896759392027531
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.783340919435594
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7961142592806754
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6587912087912088
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6999416228838296
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6222106901920083
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6182374585427982
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6571485734047059
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5865594344408018
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7641561297416162
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8123904149620105
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7213284898806435
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-large-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/bertweet-large-tweetner-2020](https://huggingface.co/tner/bertweet-large-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6641431520991053
|
94 |
+
- Precision (micro): 0.6588529813381885
|
95 |
+
- Recall (micro): 0.6695189639222942
|
96 |
+
- F1 (macro): 0.6165782134695219
|
97 |
+
- Precision (macro): 0.6102975783874098
|
98 |
+
- Recall (macro): 0.6256153624327598
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5507246376811594
|
104 |
+
- creative_work: 0.4684914067472947
|
105 |
+
- event: 0.4815724815724816
|
106 |
+
- group: 0.6143572621035058
|
107 |
+
- location: 0.6886731391585761
|
108 |
+
- person: 0.8404178674351586
|
109 |
+
- product: 0.6718106995884774
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6551977421192867, 0.6726790034801573]
|
114 |
+
- 95%: [0.6537478870999098, 0.6745822333244045]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6551977421192867, 0.6726790034801573]
|
117 |
+
- 95%: [0.6537478870999098, 0.6745822333244045]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-large-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-large-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/bertweet-large-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-06
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6532663316582915, "micro/f1_ci": {}, "micro/recall": 0.65, "micro/precision": 0.6565656565656566, "macro/f1": 0.6130509850715328, "macro/f1_ci": {}, "macro/recall": 0.615356967051296, "macro/precision": 0.613081734826762, "per_entity_metric": {"corporation": {"f1": 0.5904761904761905, "f1_ci": {}, "precision": 0.5740740740740741, "recall": 0.6078431372549019}, "creative_work": {"f1": 0.49673202614379086, "f1_ci": {}, "precision": 0.4810126582278481, "recall": 0.5135135135135135}, "event": {"f1": 0.4170212765957447, "f1_ci": {}, "precision": 0.47115384615384615, "recall": 0.37404580152671757}, "group": {"f1": 0.618510158013544, "f1_ci": {}, "precision": 0.6342592592592593, "recall": 0.6035242290748899}, "location": {"f1": 0.6845637583892618, "f1_ci": {}, "precision": 0.6623376623376623, "recall": 0.7083333333333334}, "person": {"f1": 0.8324697754749568, "f1_ci": {}, "precision": 0.8141891891891891, "recall": 0.8515901060070671}, "product": {"f1": 0.6515837104072398, "f1_ci": {}, "precision": 0.6545454545454545, "recall": 0.6486486486486487}}}, "2021.test": {"micro/f1": 0.6641431520991053, "micro/f1_ci": {"90": [0.6551977421192867, 0.6726790034801573], "95": [0.6537478870999098, 0.6745822333244045]}, "micro/recall": 0.6695189639222942, "micro/precision": 0.6588529813381885, "macro/f1": 0.6165782134695219, "macro/f1_ci": {"90": [0.6067197256596341, 0.6256044510960733], "95": [0.6051019712561241, 0.6272725844616904]}, "macro/recall": 0.6256153624327598, "macro/precision": 0.6102975783874098, "per_entity_metric": {"corporation": {"f1": 0.5507246376811594, "f1_ci": {"90": [0.5254082699108996, 0.5773166181256275], "95": [0.5208478779438392, 0.5823103234936461]}, "precision": 0.5525727069351231, "recall": 0.5488888888888889}, "creative_work": {"f1": 0.4684914067472947, "f1_ci": {"90": [0.43769556974104906, 0.4987696892294594], "95": [0.4306276297645928, 0.503900885472692]}, "precision": 0.4380952380952381, "recall": 0.5034199726402189}, "event": {"f1": 0.4815724815724816, "f1_ci": {"90": [0.45748383888612637, 0.5051356400612352], "95": [0.453626352887228, 0.5078142035880663]}, "precision": 0.5235042735042735, "recall": 0.445859872611465}, "group": {"f1": 0.6143572621035058, "f1_ci": {"90": [0.5931312033684751, 0.6362758250713497], "95": [0.5898185538332443, 0.640990290362259]}, "precision": 0.6228842247799594, "recall": 0.6060606060606061}, "location": {"f1": 0.6886731391585761, "f1_ci": {"90": [0.6638351146228115, 0.7148122115942915], "95": [0.6584092995447562, 0.7185025217834956]}, "precision": 0.6417370325693607, "recall": 0.7430167597765364}, "person": {"f1": 0.8404178674351586, "f1_ci": {"90": [0.8298100715749012, 0.8504605055787255], "95": [0.828366934999076, 0.851877851877852]}, "precision": 0.8214788732394366, "recall": 0.8602507374631269}, "product": {"f1": 0.6718106995884774, "f1_ci": {"90": [0.65082156900923, 0.6922712449645116], "95": [0.6453161615534301, 0.6960348412597874]}, "precision": 0.6718106995884774, "recall": 0.6718106995884774}}}, "2020.test": {"micro/f1": 0.6587912087912088, "micro/f1_ci": {"90": [0.6388349564310538, 0.6775372411164946], "95": [0.6347700739178536, 0.6817724596099083]}, "micro/recall": 0.6222106901920083, "micro/precision": 0.6999416228838296, "macro/f1": 0.6182374585427982, "macro/f1_ci": {"90": [0.5956469999846385, 0.6396562173710457], "95": [0.5924717479435003, 0.643052479903031]}, "macro/recall": 0.5865594344408018, "macro/precision": 0.6571485734047059, "per_entity_metric": {"corporation": {"f1": 0.5837837837837839, "f1_ci": {"90": [0.5257238173647558, 0.6340269047020367], "95": [0.5147848132574822, 0.6415194434712977]}, "precision": 0.6033519553072626, "recall": 0.5654450261780105}, "creative_work": {"f1": 0.5464788732394367, "f1_ci": {"90": [0.4858406810117715, 0.6012249962680998], "95": [0.4752830687830688, 0.6118356854309848]}, "precision": 0.5511363636363636, "recall": 0.5418994413407822}, "event": {"f1": 0.4612244897959184, "f1_ci": {"90": [0.40925298655360004, 0.5121951219512195], "95": [0.4, 0.5224982057102179]}, "precision": 0.5022222222222222, "recall": 0.42641509433962266}, "group": {"f1": 0.5639097744360902, "f1_ci": {"90": [0.5085325152068667, 0.6129582440493426], "95": [0.4999765478424015, 0.6242067115955933]}, "precision": 0.6787330316742082, "recall": 0.48231511254019294}, "location": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.5992845117845118, 0.725033185840708], "95": [0.5871509772636617, 0.7378266550522647]}, "precision": 0.6792452830188679, "recall": 0.6545454545454545}, "person": {"f1": 0.8389319552110249, "f1_ci": {"90": [0.8120086435076491, 0.8618636353151934], "95": [0.8049340069594505, 0.8669009775259731]}, "precision": 0.8619469026548673, "recall": 0.8171140939597316}, "product": {"f1": 0.6666666666666667, "f1_ci": {"90": [0.6168948944597402, 0.7127101210767604], "95": [0.604633351992265, 0.7208783153405305]}, "precision": 0.723404255319149, "recall": 0.6181818181818182}}}, "2021.test (span detection)": {"micro/f1": 0.7896759392027531, "micro/f1_ci": {}, "micro/recall": 0.7961142592806754, "micro/precision": 0.783340919435594, "macro/f1": 0.7896759392027531, "macro/f1_ci": {}, "macro/recall": 0.7961142592806754, "macro/precision": 0.783340919435594}, "2020.test (span detection)": {"micro/f1": 0.7641561297416162, "micro/f1_ci": {}, "micro/recall": 0.7213284898806435, "micro/precision": 0.8123904149620105, "macro/f1": 0.7641561297416162, "macro/f1_ci": {}, "macro/recall": 0.7213284898806435, "macro/precision": 0.8123904149620105}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6587912087912088, "micro/f1_ci": {"90": [0.6388349564310538, 0.6775372411164946], "95": [0.6347700739178536, 0.6817724596099083]}, "micro/recall": 0.6222106901920083, "micro/precision": 0.6999416228838296, "macro/f1": 0.6182374585427982, "macro/f1_ci": {"90": [0.5956469999846385, 0.6396562173710457], "95": [0.5924717479435003, 0.643052479903031]}, "macro/recall": 0.5865594344408018, "macro/precision": 0.6571485734047059, "per_entity_metric": {"corporation": {"f1": 0.5837837837837839, "f1_ci": {"90": [0.5257238173647558, 0.6340269047020367], "95": [0.5147848132574822, 0.6415194434712977]}, "precision": 0.6033519553072626, "recall": 0.5654450261780105}, "creative_work": {"f1": 0.5464788732394367, "f1_ci": {"90": [0.4858406810117715, 0.6012249962680998], "95": [0.4752830687830688, 0.6118356854309848]}, "precision": 0.5511363636363636, "recall": 0.5418994413407822}, "event": {"f1": 0.4612244897959184, "f1_ci": {"90": [0.40925298655360004, 0.5121951219512195], "95": [0.4, 0.5224982057102179]}, "precision": 0.5022222222222222, "recall": 0.42641509433962266}, "group": {"f1": 0.5639097744360902, "f1_ci": {"90": [0.5085325152068667, 0.6129582440493426], "95": [0.4999765478424015, 0.6242067115955933]}, "precision": 0.6787330316742082, "recall": 0.48231511254019294}, "location": {"f1": 0.6666666666666666, "f1_ci": {"90": [0.5992845117845118, 0.725033185840708], "95": [0.5871509772636617, 0.7378266550522647]}, "precision": 0.6792452830188679, "recall": 0.6545454545454545}, "person": {"f1": 0.8389319552110249, "f1_ci": {"90": [0.8120086435076491, 0.8618636353151934], "95": [0.8049340069594505, 0.8669009775259731]}, "precision": 0.8619469026548673, "recall": 0.8171140939597316}, "product": {"f1": 0.6666666666666667, "f1_ci": {"90": [0.6168948944597402, 0.7127101210767604], "95": [0.604633351992265, 0.7208783153405305]}, "precision": 0.723404255319149, "recall": 0.6181818181818182}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6641431520991053, "micro/f1_ci": {"90": [0.6551977421192867, 0.6726790034801573], "95": [0.6537478870999098, 0.6745822333244045]}, "micro/recall": 0.6695189639222942, "micro/precision": 0.6588529813381885, "macro/f1": 0.6165782134695219, "macro/f1_ci": {"90": [0.6067197256596341, 0.6256044510960733], "95": [0.6051019712561241, 0.6272725844616904]}, "macro/recall": 0.6256153624327598, "macro/precision": 0.6102975783874098, "per_entity_metric": {"corporation": {"f1": 0.5507246376811594, "f1_ci": {"90": [0.5254082699108996, 0.5773166181256275], "95": [0.5208478779438392, 0.5823103234936461]}, "precision": 0.5525727069351231, "recall": 0.5488888888888889}, "creative_work": {"f1": 0.4684914067472947, "f1_ci": {"90": [0.43769556974104906, 0.4987696892294594], "95": [0.4306276297645928, 0.503900885472692]}, "precision": 0.4380952380952381, "recall": 0.5034199726402189}, "event": {"f1": 0.4815724815724816, "f1_ci": {"90": [0.45748383888612637, 0.5051356400612352], "95": [0.453626352887228, 0.5078142035880663]}, "precision": 0.5235042735042735, "recall": 0.445859872611465}, "group": {"f1": 0.6143572621035058, "f1_ci": {"90": [0.5931312033684751, 0.6362758250713497], "95": [0.5898185538332443, 0.640990290362259]}, "precision": 0.6228842247799594, "recall": 0.6060606060606061}, "location": {"f1": 0.6886731391585761, "f1_ci": {"90": [0.6638351146228115, 0.7148122115942915], "95": [0.6584092995447562, 0.7185025217834956]}, "precision": 0.6417370325693607, "recall": 0.7430167597765364}, "person": {"f1": 0.8404178674351586, "f1_ci": {"90": [0.8298100715749012, 0.8504605055787255], "95": [0.828366934999076, 0.851877851877852]}, "precision": 0.8214788732394366, "recall": 0.8602507374631269}, "product": {"f1": 0.6718106995884774, "f1_ci": {"90": [0.65082156900923, 0.6922712449645116], "95": [0.6453161615534301, 0.6960348412597874]}, "precision": 0.6718106995884774, "recall": 0.6718106995884774}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7641561297416162, "micro/f1_ci": {}, "micro/recall": 0.7213284898806435, "micro/precision": 0.8123904149620105, "macro/f1": 0.7641561297416162, "macro/f1_ci": {}, "macro/recall": 0.7213284898806435, "macro/precision": 0.8123904149620105}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7896759392027531, "micro/f1_ci": {}, "micro/recall": 0.7961142592806754, "micro/precision": 0.783340919435594, "macro/f1": 0.7896759392027531, "macro/f1_ci": {}, "macro/recall": 0.7961142592806754, "macro/precision": 0.783340919435594}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/bertweet-large-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-06, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|