model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-large-tweetner7-2020
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6401254269555967
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6205623710780589
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6609620721554117
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5947383155381057
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5738855505495571
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6206178838164583
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7826184343151529
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7586581261535121
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8081415519833468
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.659346545259775
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6812396236856668
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6388168137000519
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6261309560026784
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6527657911787169
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.6111694484964181
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7738478027867096
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.749351323300467
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-large-tweetner7-2020
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2020` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6401254269555967
|
94 |
+
- Precision (micro): 0.6205623710780589
|
95 |
+
- Recall (micro): 0.6609620721554117
|
96 |
+
- F1 (macro): 0.5947383155381057
|
97 |
+
- Precision (macro): 0.5738855505495571
|
98 |
+
- Recall (macro): 0.6206178838164583
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5229357798165137
|
104 |
+
- creative_work: 0.4629981024667932
|
105 |
+
- event: 0.4499572284003422
|
106 |
+
- group: 0.592749032030975
|
107 |
+
- location: 0.6553030303030303
|
108 |
+
- person: 0.8273135669362084
|
109 |
+
- product: 0.6519114688128772
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6315544728348781, 0.6491758274095626]
|
114 |
+
- 95%: [0.6294268706225905, 0.6515448119225267]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6315544728348781, 0.6491758274095626]
|
117 |
+
- 95%: [0.6294268706225905, 0.6515448119225267]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-tweetner7-2020/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-large-tweetner7-2020/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-large-tweetner7-2020")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2020
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: vinai/bertweet-large
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-tweetner7-2020/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.6437029063509151, "micro/f1_ci": {}, "micro/recall": 0.6248693834900731, "micro/precision": 0.6637069922308546, "macro/f1": 0.591642865243014, "macro/f1_ci": {}, "macro/recall": 0.5755700410698614, "macro/precision": 0.6133965500147562, "per_entity_metric": {"corporation": {"f1": 0.5051546391752577, "f1_ci": {}, "precision": 0.5297297297297298, "recall": 0.4827586206896552}, "creative_work": {"f1": 0.54, "f1_ci": {}, "precision": 0.5625, "recall": 0.5192307692307693}, "event": {"f1": 0.39312977099236646, "f1_ci": {}, "precision": 0.3843283582089552, "recall": 0.40234375}, "group": {"f1": 0.5495049504950495, "f1_ci": {}, "precision": 0.6271186440677966, "recall": 0.4889867841409692}, "location": {"f1": 0.6227848101265823, "f1_ci": {}, "precision": 0.5747663551401869, "recall": 0.6795580110497238}, "person": {"f1": 0.874675885911841, "f1_ci": {}, "precision": 0.9051878354203936, "recall": 0.8461538461538461}, "product": {"f1": 0.6562500000000001, "f1_ci": {}, "precision": 0.7101449275362319, "recall": 0.6099585062240664}}}, "2021.test": {"micro/f1": 0.6401254269555967, "micro/f1_ci": {"90": [0.6315544728348781, 0.6491758274095626], "95": [0.6294268706225905, 0.6515448119225267]}, "micro/recall": 0.6609620721554117, "micro/precision": 0.6205623710780589, "macro/f1": 0.5947383155381057, "macro/f1_ci": {"90": [0.5852724504065837, 0.6043623226898465], "95": [0.5836410112124547, 0.6063768583335745]}, "macro/recall": 0.6206178838164583, "macro/precision": 0.5738855505495571, "per_entity_metric": {"corporation": {"f1": 0.5229357798165137, "f1_ci": {"90": [0.49706039551042225, 0.5489060654201801], "95": [0.49299356150347506, 0.5543603424996233]}, "precision": 0.4830508474576271, "recall": 0.57}, "creative_work": {"f1": 0.4629981024667932, "f1_ci": {"90": [0.43277573053403184, 0.4925610964986595], "95": [0.4272513399167463, 0.49761378932009187]}, "precision": 0.43058823529411766, "recall": 0.5006839945280438}, "event": {"f1": 0.4499572284003422, "f1_ci": {"90": [0.4274287289095753, 0.47154022208242086], "95": [0.4228081863105448, 0.47623473640595676]}, "precision": 0.4245359160613398, "recall": 0.4786169244767971}, "group": {"f1": 0.592749032030975, "f1_ci": {"90": [0.5722540581576642, 0.6147130977130977], "95": [0.5676533946830992, 0.6194597542880659]}, "precision": 0.636432350718065, "recall": 0.5546772068511199}, "location": {"f1": 0.6553030303030303, "f1_ci": {"90": [0.6304163397345088, 0.6817280494561573], "95": [0.6255962515548817, 0.6867043413492904]}, "precision": 0.597926267281106, "recall": 0.7248603351955307}, "person": {"f1": 0.8273135669362084, "f1_ci": {"90": [0.8160811561878993, 0.8380472862595445], "95": [0.814691063129817, 0.8397603550670991]}, "precision": 0.806869961444094, "recall": 0.8488200589970502}, "product": {"f1": 0.6519114688128772, "f1_ci": {"90": [0.6299024970087858, 0.6725193990424303], "95": [0.6268028691225062, 0.6764233561966475]}, "precision": 0.6377952755905512, "recall": 0.6666666666666666}}}, "2020.test": {"micro/f1": 0.659346545259775, "micro/f1_ci": {"90": [0.638530476656731, 0.6770002736609395], "95": [0.6355787571672109, 0.6814383304317009]}, "micro/recall": 0.6388168137000519, "micro/precision": 0.6812396236856668, "macro/f1": 0.6261309560026784, "macro/f1_ci": {"90": [0.6035614787399021, 0.6466837937863731], "95": [0.6008212526260872, 0.6498051149764593]}, "macro/recall": 0.6111694484964181, "macro/precision": 0.6527657911787169, "per_entity_metric": {"corporation": {"f1": 0.5966587112171838, "f1_ci": {"90": [0.5434307846076962, 0.6461646550171141], "95": [0.5326863869413766, 0.6552623249971564]}, "precision": 0.5482456140350878, "recall": 0.6544502617801047}, "creative_work": {"f1": 0.5892351274787537, "f1_ci": {"90": [0.5297221164826799, 0.6412325295653509], "95": [0.5167939021229471, 0.6498711140898077]}, "precision": 0.5977011494252874, "recall": 0.5810055865921788}, "event": {"f1": 0.4500907441016334, "f1_ci": {"90": [0.4, 0.5], "95": [0.3933869964988056, 0.5071014607812004]}, "precision": 0.43356643356643354, "recall": 0.4679245283018868}, "group": {"f1": 0.5454545454545454, "f1_ci": {"90": [0.4908707249478041, 0.5995649027168184], "95": [0.47806491874824353, 0.6098095911901321]}, "precision": 0.7076923076923077, "recall": 0.4437299035369775}, "location": {"f1": 0.6808510638297872, "f1_ci": {"90": [0.6158357771260997, 0.7378894784375705], "95": [0.6056659605996418, 0.7468373964681981]}, "precision": 0.6829268292682927, "recall": 0.6787878787878788}, "person": {"f1": 0.8358974358974359, "f1_ci": {"90": [0.8090079967608057, 0.8589565954118873], "95": [0.802661820512157, 0.864705203631851]}, "precision": 0.8519163763066202, "recall": 0.8204697986577181}, "product": {"f1": 0.6847290640394088, "f1_ci": {"90": [0.6328984758460346, 0.731190820093083], "95": [0.6213509150900847, 0.7403650506863269]}, "precision": 0.7473118279569892, "recall": 0.6318181818181818}}}, "2021.test (span detection)": {"micro/f1": 0.7826184343151529, "micro/f1_ci": {}, "micro/recall": 0.8081415519833468, "micro/precision": 0.7586581261535121, "macro/f1": 0.7826184343151529, "macro/f1_ci": {}, "macro/recall": 0.8081415519833468, "macro/precision": 0.7586581261535121}, "2020.test (span detection)": {"micro/f1": 0.7738478027867096, "micro/f1_ci": {}, "micro/recall": 0.749351323300467, "micro/precision": 0.8, "macro/f1": 0.7738478027867096, "macro/f1_ci": {}, "macro/recall": 0.749351323300467, "macro/precision": 0.8}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.659346545259775, "micro/f1_ci": {"90": [0.638530476656731, 0.6770002736609395], "95": [0.6355787571672109, 0.6814383304317009]}, "micro/recall": 0.6388168137000519, "micro/precision": 0.6812396236856668, "macro/f1": 0.6261309560026784, "macro/f1_ci": {"90": [0.6035614787399021, 0.6466837937863731], "95": [0.6008212526260872, 0.6498051149764593]}, "macro/recall": 0.6111694484964181, "macro/precision": 0.6527657911787169, "per_entity_metric": {"corporation": {"f1": 0.5966587112171838, "f1_ci": {"90": [0.5434307846076962, 0.6461646550171141], "95": [0.5326863869413766, 0.6552623249971564]}, "precision": 0.5482456140350878, "recall": 0.6544502617801047}, "creative_work": {"f1": 0.5892351274787537, "f1_ci": {"90": [0.5297221164826799, 0.6412325295653509], "95": [0.5167939021229471, 0.6498711140898077]}, "precision": 0.5977011494252874, "recall": 0.5810055865921788}, "event": {"f1": 0.4500907441016334, "f1_ci": {"90": [0.4, 0.5], "95": [0.3933869964988056, 0.5071014607812004]}, "precision": 0.43356643356643354, "recall": 0.4679245283018868}, "group": {"f1": 0.5454545454545454, "f1_ci": {"90": [0.4908707249478041, 0.5995649027168184], "95": [0.47806491874824353, 0.6098095911901321]}, "precision": 0.7076923076923077, "recall": 0.4437299035369775}, "location": {"f1": 0.6808510638297872, "f1_ci": {"90": [0.6158357771260997, 0.7378894784375705], "95": [0.6056659605996418, 0.7468373964681981]}, "precision": 0.6829268292682927, "recall": 0.6787878787878788}, "person": {"f1": 0.8358974358974359, "f1_ci": {"90": [0.8090079967608057, 0.8589565954118873], "95": [0.802661820512157, 0.864705203631851]}, "precision": 0.8519163763066202, "recall": 0.8204697986577181}, "product": {"f1": 0.6847290640394088, "f1_ci": {"90": [0.6328984758460346, 0.731190820093083], "95": [0.6213509150900847, 0.7403650506863269]}, "precision": 0.7473118279569892, "recall": 0.6318181818181818}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6401254269555967, "micro/f1_ci": {"90": [0.6315544728348781, 0.6491758274095626], "95": [0.6294268706225905, 0.6515448119225267]}, "micro/recall": 0.6609620721554117, "micro/precision": 0.6205623710780589, "macro/f1": 0.5947383155381057, "macro/f1_ci": {"90": [0.5852724504065837, 0.6043623226898465], "95": [0.5836410112124547, 0.6063768583335745]}, "macro/recall": 0.6206178838164583, "macro/precision": 0.5738855505495571, "per_entity_metric": {"corporation": {"f1": 0.5229357798165137, "f1_ci": {"90": [0.49706039551042225, 0.5489060654201801], "95": [0.49299356150347506, 0.5543603424996233]}, "precision": 0.4830508474576271, "recall": 0.57}, "creative_work": {"f1": 0.4629981024667932, "f1_ci": {"90": [0.43277573053403184, 0.4925610964986595], "95": [0.4272513399167463, 0.49761378932009187]}, "precision": 0.43058823529411766, "recall": 0.5006839945280438}, "event": {"f1": 0.4499572284003422, "f1_ci": {"90": [0.4274287289095753, 0.47154022208242086], "95": [0.4228081863105448, 0.47623473640595676]}, "precision": 0.4245359160613398, "recall": 0.4786169244767971}, "group": {"f1": 0.592749032030975, "f1_ci": {"90": [0.5722540581576642, 0.6147130977130977], "95": [0.5676533946830992, 0.6194597542880659]}, "precision": 0.636432350718065, "recall": 0.5546772068511199}, "location": {"f1": 0.6553030303030303, "f1_ci": {"90": [0.6304163397345088, 0.6817280494561573], "95": [0.6255962515548817, 0.6867043413492904]}, "precision": 0.597926267281106, "recall": 0.7248603351955307}, "person": {"f1": 0.8273135669362084, "f1_ci": {"90": [0.8160811561878993, 0.8380472862595445], "95": [0.814691063129817, 0.8397603550670991]}, "precision": 0.806869961444094, "recall": 0.8488200589970502}, "product": {"f1": 0.6519114688128772, "f1_ci": {"90": [0.6299024970087858, 0.6725193990424303], "95": [0.6268028691225062, 0.6764233561966475]}, "precision": 0.6377952755905512, "recall": 0.6666666666666666}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7738478027867096, "micro/f1_ci": {}, "micro/recall": 0.749351323300467, "micro/precision": 0.8, "macro/f1": 0.7738478027867096, "macro/f1_ci": {}, "macro/recall": 0.749351323300467, "macro/precision": 0.8}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7826184343151529, "micro/f1_ci": {}, "micro/recall": 0.8081415519833468, "micro/precision": 0.7586581261535121, "macro/f1": 0.7826184343151529, "macro/f1_ci": {}, "macro/recall": 0.8081415519833468, "macro/precision": 0.7586581261535121}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2020", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-large", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|