model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-base-tweetner7-2020-2021-concat
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6536203522504892
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6327812060192703
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6758788159111934
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.6052211252463111
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5838227039402247
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6302754427289782
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7898680384701409
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7646421998484356
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8168150803746964
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6574172892209178
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6765513454146074
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6393357550596782
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6161494551388561
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6335227896210995
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.6030680287240185
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7691486522551374
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7917582417582417
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7477944992215879
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-base-tweetner7-2020-2021-concat
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_all` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6536203522504892
|
94 |
+
- Precision (micro): 0.6327812060192703
|
95 |
+
- Recall (micro): 0.6758788159111934
|
96 |
+
- F1 (macro): 0.6052211252463111
|
97 |
+
- Precision (macro): 0.5838227039402247
|
98 |
+
- Recall (macro): 0.6302754427289782
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5250836120401337
|
104 |
+
- creative_work: 0.4653774173424829
|
105 |
+
- event: 0.4805781391147245
|
106 |
+
- group: 0.6033376123234916
|
107 |
+
- location: 0.6567164179104478
|
108 |
+
- person: 0.8408236347358997
|
109 |
+
- product: 0.6646310432569975
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6447872756148977, 0.6633207283107695]
|
114 |
+
- 95%: [0.6425923702362265, 0.6650666703489687]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6447872756148977, 0.6633207283107695]
|
117 |
+
- 95%: [0.6425923702362265, 0.6650666703489687]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-base-tweetner7-2020-2021-concat/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-base-tweetner7-2020-2021-concat/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-base-tweetner7-2020-2021-concat")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_all
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: vinai/bertweet-base
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-base-tweetner7-2020-2021-concat/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6479289940828402, "micro/f1_ci": {}, "micro/recall": 0.657, "micro/precision": 0.6391050583657587, "macro/f1": 0.6043271222909856, "macro/f1_ci": {}, "macro/recall": 0.6132417907641617, "macro/precision": 0.5968927910350338, "per_entity_metric": {"corporation": {"f1": 0.5603864734299516, "f1_ci": {}, "precision": 0.5523809523809524, "recall": 0.5686274509803921}, "creative_work": {"f1": 0.48407643312101906, "f1_ci": {}, "precision": 0.4578313253012048, "recall": 0.5135135135135135}, "event": {"f1": 0.4528301886792453, "f1_ci": {}, "precision": 0.44776119402985076, "recall": 0.4580152671755725}, "group": {"f1": 0.6269315673289183, "f1_ci": {}, "precision": 0.6283185840707964, "recall": 0.6255506607929515}, "location": {"f1": 0.6442953020134228, "f1_ci": {}, "precision": 0.6233766233766234, "recall": 0.6666666666666666}, "person": {"f1": 0.8361774744027305, "f1_ci": {}, "precision": 0.8085808580858086, "recall": 0.8657243816254417}, "product": {"f1": 0.6255924170616114, "f1_ci": {}, "precision": 0.66, "recall": 0.5945945945945946}}}, "2021.test": {"micro/f1": 0.6536203522504892, "micro/f1_ci": {"90": [0.6447872756148977, 0.6633207283107695], "95": [0.6425923702362265, 0.6650666703489687]}, "micro/recall": 0.6758788159111934, "micro/precision": 0.6327812060192703, "macro/f1": 0.6052211252463111, "macro/f1_ci": {"90": [0.5954577789975593, 0.6145053233650972], "95": [0.5935811679603806, 0.6159321952528645]}, "macro/recall": 0.6302754427289782, "macro/precision": 0.5838227039402247, "per_entity_metric": {"corporation": {"f1": 0.5250836120401337, "f1_ci": {"90": [0.499114468582439, 0.5502487923745039], "95": [0.49402204164639574, 0.5542265421428756]}, "precision": 0.5268456375838926, "recall": 0.5233333333333333}, "creative_work": {"f1": 0.4653774173424829, "f1_ci": {"90": [0.4350066554677983, 0.4944221755636148], "95": [0.42865964754879954, 0.5003082860885536]}, "precision": 0.42775229357798167, "recall": 0.5102599179206566}, "event": {"f1": 0.4805781391147245, "f1_ci": {"90": [0.45876392113230563, 0.5025502448910658], "95": [0.4547767349386974, 0.5085979655019902]}, "precision": 0.47713004484304933, "recall": 0.4840764331210191}, "group": {"f1": 0.6033376123234916, "f1_ci": {"90": [0.5833319019809917, 0.6255975435188365], "95": [0.5807051025464135, 0.6290415081557142]}, "precision": 0.5882352941176471, "recall": 0.619235836627141}, "location": {"f1": 0.6567164179104478, "f1_ci": {"90": [0.6289343271359739, 0.6827299264868976], "95": [0.6232678042111391, 0.6866568408235075]}, "precision": 0.5919282511210763, "recall": 0.7374301675977654}, "person": {"f1": 0.8408236347358997, "f1_ci": {"90": [0.8306288526403558, 0.8509253313521083], "95": [0.8287685929940346, 0.8526699869564047]}, "precision": 0.8172641837800209, "recall": 0.8657817109144543}, "product": {"f1": 0.6646310432569975, "f1_ci": {"90": [0.642891431340614, 0.6874707012510687], "95": [0.6397193439875759, 0.6905268361734545]}, "precision": 0.6576032225579054, "recall": 0.6718106995884774}}}, "2020.test": {"micro/f1": 0.6574172892209178, "micro/f1_ci": {"90": [0.6362605912738951, 0.6776829185560604], "95": [0.6329381337554338, 0.681496695257187]}, "micro/recall": 0.6393357550596782, "micro/precision": 0.6765513454146074, "macro/f1": 0.6161494551388561, "macro/f1_ci": {"90": [0.5922560215720907, 0.6371588233814224], "95": [0.5874972325138178, 0.6433530990576218]}, "macro/recall": 0.6030680287240185, "macro/precision": 0.6335227896210995, "per_entity_metric": {"corporation": {"f1": 0.5721925133689839, "f1_ci": {"90": [0.5118543960209868, 0.627970887027902], "95": [0.5013, 0.6377742851758119]}, "precision": 0.5846994535519126, "recall": 0.5602094240837696}, "creative_work": {"f1": 0.5409836065573771, "f1_ci": {"90": [0.4857961799177999, 0.593859943977591], "95": [0.4738351063829787, 0.6035510525280346]}, "precision": 0.5294117647058824, "recall": 0.553072625698324}, "event": {"f1": 0.48554913294797686, "f1_ci": {"90": [0.43302563132507327, 0.5353292120908344], "95": [0.42145597637198395, 0.5447158512340591]}, "precision": 0.49606299212598426, "recall": 0.47547169811320755}, "group": {"f1": 0.5734767025089605, "f1_ci": {"90": [0.519707990723171, 0.6271215968818284], "95": [0.5103473314135293, 0.6346256684491981]}, "precision": 0.6477732793522267, "recall": 0.5144694533762058}, "location": {"f1": 0.6457142857142857, "f1_ci": {"90": [0.5746137178098175, 0.7090515682906987], "95": [0.5604067645282423, 0.7207259585166563]}, "precision": 0.6108108108108108, "recall": 0.6848484848484848}, "person": {"f1": 0.8415672913117546, "f1_ci": {"90": [0.8160757025086428, 0.8660040531276134], "95": [0.8116914027938739, 0.8688960711564506]}, "precision": 0.8546712802768166, "recall": 0.8288590604026845}, "product": {"f1": 0.6535626535626535, "f1_ci": {"90": [0.6015352256997502, 0.7024343440641215], "95": [0.5921931733188277, 0.711786009526434]}, "precision": 0.7112299465240641, "recall": 0.6045454545454545}}}, "2021.test (span detection)": {"micro/f1": 0.7898680384701409, "micro/f1_ci": {}, "micro/recall": 0.8168150803746964, "micro/precision": 0.7646421998484356, "macro/f1": 0.7898680384701409, "macro/f1_ci": {}, "macro/recall": 0.8168150803746964, "macro/precision": 0.7646421998484356}, "2020.test (span detection)": {"micro/f1": 0.7691486522551374, "micro/f1_ci": {}, "micro/recall": 0.7477944992215879, "micro/precision": 0.7917582417582417, "macro/f1": 0.7691486522551374, "macro/f1_ci": {}, "macro/recall": 0.7477944992215879, "macro/precision": 0.7917582417582417}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6574172892209178, "micro/f1_ci": {"90": [0.6362605912738951, 0.6776829185560604], "95": [0.6329381337554338, 0.681496695257187]}, "micro/recall": 0.6393357550596782, "micro/precision": 0.6765513454146074, "macro/f1": 0.6161494551388561, "macro/f1_ci": {"90": [0.5922560215720907, 0.6371588233814224], "95": [0.5874972325138178, 0.6433530990576218]}, "macro/recall": 0.6030680287240185, "macro/precision": 0.6335227896210995, "per_entity_metric": {"corporation": {"f1": 0.5721925133689839, "f1_ci": {"90": [0.5118543960209868, 0.627970887027902], "95": [0.5013, 0.6377742851758119]}, "precision": 0.5846994535519126, "recall": 0.5602094240837696}, "creative_work": {"f1": 0.5409836065573771, "f1_ci": {"90": [0.4857961799177999, 0.593859943977591], "95": [0.4738351063829787, 0.6035510525280346]}, "precision": 0.5294117647058824, "recall": 0.553072625698324}, "event": {"f1": 0.48554913294797686, "f1_ci": {"90": [0.43302563132507327, 0.5353292120908344], "95": [0.42145597637198395, 0.5447158512340591]}, "precision": 0.49606299212598426, "recall": 0.47547169811320755}, "group": {"f1": 0.5734767025089605, "f1_ci": {"90": [0.519707990723171, 0.6271215968818284], "95": [0.5103473314135293, 0.6346256684491981]}, "precision": 0.6477732793522267, "recall": 0.5144694533762058}, "location": {"f1": 0.6457142857142857, "f1_ci": {"90": [0.5746137178098175, 0.7090515682906987], "95": [0.5604067645282423, 0.7207259585166563]}, "precision": 0.6108108108108108, "recall": 0.6848484848484848}, "person": {"f1": 0.8415672913117546, "f1_ci": {"90": [0.8160757025086428, 0.8660040531276134], "95": [0.8116914027938739, 0.8688960711564506]}, "precision": 0.8546712802768166, "recall": 0.8288590604026845}, "product": {"f1": 0.6535626535626535, "f1_ci": {"90": [0.6015352256997502, 0.7024343440641215], "95": [0.5921931733188277, 0.711786009526434]}, "precision": 0.7112299465240641, "recall": 0.6045454545454545}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6536203522504892, "micro/f1_ci": {"90": [0.6447872756148977, 0.6633207283107695], "95": [0.6425923702362265, 0.6650666703489687]}, "micro/recall": 0.6758788159111934, "micro/precision": 0.6327812060192703, "macro/f1": 0.6052211252463111, "macro/f1_ci": {"90": [0.5954577789975593, 0.6145053233650972], "95": [0.5935811679603806, 0.6159321952528645]}, "macro/recall": 0.6302754427289782, "macro/precision": 0.5838227039402247, "per_entity_metric": {"corporation": {"f1": 0.5250836120401337, "f1_ci": {"90": [0.499114468582439, 0.5502487923745039], "95": [0.49402204164639574, 0.5542265421428756]}, "precision": 0.5268456375838926, "recall": 0.5233333333333333}, "creative_work": {"f1": 0.4653774173424829, "f1_ci": {"90": [0.4350066554677983, 0.4944221755636148], "95": [0.42865964754879954, 0.5003082860885536]}, "precision": 0.42775229357798167, "recall": 0.5102599179206566}, "event": {"f1": 0.4805781391147245, "f1_ci": {"90": [0.45876392113230563, 0.5025502448910658], "95": [0.4547767349386974, 0.5085979655019902]}, "precision": 0.47713004484304933, "recall": 0.4840764331210191}, "group": {"f1": 0.6033376123234916, "f1_ci": {"90": [0.5833319019809917, 0.6255975435188365], "95": [0.5807051025464135, 0.6290415081557142]}, "precision": 0.5882352941176471, "recall": 0.619235836627141}, "location": {"f1": 0.6567164179104478, "f1_ci": {"90": [0.6289343271359739, 0.6827299264868976], "95": [0.6232678042111391, 0.6866568408235075]}, "precision": 0.5919282511210763, "recall": 0.7374301675977654}, "person": {"f1": 0.8408236347358997, "f1_ci": {"90": [0.8306288526403558, 0.8509253313521083], "95": [0.8287685929940346, 0.8526699869564047]}, "precision": 0.8172641837800209, "recall": 0.8657817109144543}, "product": {"f1": 0.6646310432569975, "f1_ci": {"90": [0.642891431340614, 0.6874707012510687], "95": [0.6397193439875759, 0.6905268361734545]}, "precision": 0.6576032225579054, "recall": 0.6718106995884774}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7691486522551374, "micro/f1_ci": {}, "micro/recall": 0.7477944992215879, "micro/precision": 0.7917582417582417, "macro/f1": 0.7691486522551374, "macro/f1_ci": {}, "macro/recall": 0.7477944992215879, "macro/precision": 0.7917582417582417}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7898680384701409, "micro/f1_ci": {}, "micro/recall": 0.8168150803746964, "micro/precision": 0.7646421998484356, "macro/f1": 0.7898680384701409, "macro/f1_ci": {}, "macro/recall": 0.8168150803746964, "macro/precision": 0.7646421998484356}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_all", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-base", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|