model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bert-large-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6319818203564167
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6544463710676245
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6110083256244219
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5766988664971804
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.601237684920777
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5559244768648601
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7603780356501973
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7875108412836079
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7350526194055742
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6247533126585846
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6839506172839506
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5749870264660093
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.578717595313749
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6410778727928796
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5301549277792547
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7245559627854524
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7932098765432098
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6668396471198754
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bert-large-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/bert-large-tweetner-2020](https://huggingface.co/tner/bert-large-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6319818203564167
|
94 |
+
- Precision (micro): 0.6544463710676245
|
95 |
+
- Recall (micro): 0.6110083256244219
|
96 |
+
- F1 (macro): 0.5766988664971804
|
97 |
+
- Precision (macro): 0.601237684920777
|
98 |
+
- Recall (macro): 0.5559244768648601
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.514024041213509
|
104 |
+
- creative_work: 0.39736070381231675
|
105 |
+
- event: 0.42546740778170794
|
106 |
+
- group: 0.5859649122807017
|
107 |
+
- location: 0.6335664335664336
|
108 |
+
- person: 0.8127490039840638
|
109 |
+
- product: 0.6677595628415302
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6231013705127983, 0.6413574593408826]
|
114 |
+
- 95%: [0.6217502353949177, 0.6428942705896876]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6231013705127983, 0.6413574593408826]
|
117 |
+
- 95%: [0.6217502353949177, 0.6428942705896876]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bert-large-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/bert-large-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-06
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-large-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6307053941908715, "micro/f1_ci": {}, "micro/recall": 0.608, "micro/precision": 0.6551724137931034, "macro/f1": 0.5769830109938662, "macro/f1_ci": {}, "macro/recall": 0.5541914611675349, "macro/precision": 0.6061513565180056, "per_entity_metric": {"corporation": {"f1": 0.5797101449275363, "f1_ci": {}, "precision": 0.5714285714285714, "recall": 0.5882352941176471}, "creative_work": {"f1": 0.41428571428571426, "f1_ci": {}, "precision": 0.4393939393939394, "recall": 0.3918918918918919}, "event": {"f1": 0.34632034632034636, "f1_ci": {}, "precision": 0.4, "recall": 0.3053435114503817}, "group": {"f1": 0.6273584905660378, "f1_ci": {}, "precision": 0.6751269035532995, "recall": 0.5859030837004405}, "location": {"f1": 0.6176470588235293, "f1_ci": {}, "precision": 0.65625, "recall": 0.5833333333333334}, "person": {"f1": 0.8135593220338982, "f1_ci": {}, "precision": 0.7817589576547231, "recall": 0.8480565371024735}, "product": {"f1": 0.6400000000000001, "f1_ci": {}, "precision": 0.7191011235955056, "recall": 0.5765765765765766}}}, "2021.test": {"micro/f1": 0.6319818203564167, "micro/f1_ci": {"90": [0.6231013705127983, 0.6413574593408826], "95": [0.6217502353949177, 0.6428942705896876]}, "micro/recall": 0.6110083256244219, "micro/precision": 0.6544463710676245, "macro/f1": 0.5766988664971804, "macro/f1_ci": {"90": [0.5664509989359489, 0.5863507925127135], "95": [0.5648974825471297, 0.5879845963012866]}, "macro/recall": 0.5559244768648601, "macro/precision": 0.601237684920777, "per_entity_metric": {"corporation": {"f1": 0.514024041213509, "f1_ci": {"90": [0.48777635327635327, 0.5386428764634433], "95": [0.48256682507571314, 0.5427950687007129]}, "precision": 0.5301062573789846, "recall": 0.4988888888888889}, "creative_work": {"f1": 0.39736070381231675, "f1_ci": {"90": [0.3673069143565192, 0.4290928789350539], "95": [0.35964709226770636, 0.43496810207336517]}, "precision": 0.42812006319115326, "recall": 0.3707250341997264}, "event": {"f1": 0.42546740778170794, "f1_ci": {"90": [0.40080966868711565, 0.4504934716037546], "95": [0.3947971875592656, 0.45604206362953986]}, "precision": 0.4784090909090909, "recall": 0.3830755232029117}, "group": {"f1": 0.5859649122807017, "f1_ci": {"90": [0.5649910032383042, 0.608005869697348], "95": [0.5609718872903313, 0.6137378755305175]}, "precision": 0.6268768768768769, "recall": 0.5500658761528326}, "location": {"f1": 0.6335664335664336, "f1_ci": {"90": [0.6022469573815304, 0.662564426082152], "95": [0.5972619047619048, 0.6684591503346138]}, "precision": 0.634453781512605, "recall": 0.63268156424581}, "person": {"f1": 0.8127490039840638, "f1_ci": {"90": [0.8007926572866582, 0.8249959351621283], "95": [0.7984037478689154, 0.8268196857132452]}, "precision": 0.798576512455516, "recall": 0.827433628318584}, "product": {"f1": 0.6677595628415302, "f1_ci": {"90": [0.6464189850752727, 0.6878997822678681], "95": [0.6421587454017522, 0.6913517415533396]}, "precision": 0.7121212121212122, "recall": 0.6286008230452675}}}, "2020.test": {"micro/f1": 0.6247533126585846, "micro/f1_ci": {"90": [0.6028688973562135, 0.64588834464267], "95": [0.5994344280959615, 0.649232518476407]}, "micro/recall": 0.5749870264660093, "micro/precision": 0.6839506172839506, "macro/f1": 0.578717595313749, "macro/f1_ci": {"90": [0.5540098280773577, 0.6005537196979407], "95": [0.5512954123930293, 0.6060087044874898]}, "macro/recall": 0.5301549277792547, "macro/precision": 0.6410778727928796, "per_entity_metric": {"corporation": {"f1": 0.565597667638484, "f1_ci": {"90": [0.5050505050505051, 0.6224819178391817], "95": [0.4969315627024349, 0.6306885822510823]}, "precision": 0.6381578947368421, "recall": 0.5078534031413613}, "creative_work": {"f1": 0.4364820846905538, "f1_ci": {"90": [0.3723977546110665, 0.4983818770226537], "95": [0.36299049637405206, 0.515419097575336]}, "precision": 0.5234375, "recall": 0.3743016759776536}, "event": {"f1": 0.45508982035928147, "f1_ci": {"90": [0.4049049185589344, 0.5067778692762893], "95": [0.3923199130398428, 0.5195618366745284]}, "precision": 0.4830508474576271, "recall": 0.43018867924528303}, "group": {"f1": 0.5038167938931298, "f1_ci": {"90": [0.44796125194135145, 0.5607960998607093], "95": [0.4362921406545568, 0.5688220314081427]}, "precision": 0.6197183098591549, "recall": 0.42443729903536975}, "location": {"f1": 0.6026490066225166, "f1_ci": {"90": [0.5320404782483434, 0.6629593282072034], "95": [0.5245744513696118, 0.6756140811769343]}, "precision": 0.6642335766423357, "recall": 0.5515151515151515}, "person": {"f1": 0.8062283737024222, "f1_ci": {"90": [0.7760587632959272, 0.8315361561829818], "95": [0.7698106545550611, 0.8356172784193372]}, "precision": 0.8321428571428572, "recall": 0.7818791946308725}, "product": {"f1": 0.6811594202898551, "f1_ci": {"90": [0.6246480367439654, 0.730964467005076], "95": [0.6142940723633565, 0.7381622865912144]}, "precision": 0.7268041237113402, "recall": 0.6409090909090909}}}, "2021.test (span detection)": {"micro/f1": 0.7603780356501973, "micro/f1_ci": {}, "micro/recall": 0.7350526194055742, "micro/precision": 0.7875108412836079, "macro/f1": 0.7603780356501973, "macro/f1_ci": {}, "macro/recall": 0.7350526194055742, "macro/precision": 0.7875108412836079}, "2020.test (span detection)": {"micro/f1": 0.7245559627854524, "micro/f1_ci": {}, "micro/recall": 0.6668396471198754, "micro/precision": 0.7932098765432098, "macro/f1": 0.7245559627854524, "macro/f1_ci": {}, "macro/recall": 0.6668396471198754, "macro/precision": 0.7932098765432098}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6247533126585846, "micro/f1_ci": {"90": [0.6028688973562135, 0.64588834464267], "95": [0.5994344280959615, 0.649232518476407]}, "micro/recall": 0.5749870264660093, "micro/precision": 0.6839506172839506, "macro/f1": 0.578717595313749, "macro/f1_ci": {"90": [0.5540098280773577, 0.6005537196979407], "95": [0.5512954123930293, 0.6060087044874898]}, "macro/recall": 0.5301549277792547, "macro/precision": 0.6410778727928796, "per_entity_metric": {"corporation": {"f1": 0.565597667638484, "f1_ci": {"90": [0.5050505050505051, 0.6224819178391817], "95": [0.4969315627024349, 0.6306885822510823]}, "precision": 0.6381578947368421, "recall": 0.5078534031413613}, "creative_work": {"f1": 0.4364820846905538, "f1_ci": {"90": [0.3723977546110665, 0.4983818770226537], "95": [0.36299049637405206, 0.515419097575336]}, "precision": 0.5234375, "recall": 0.3743016759776536}, "event": {"f1": 0.45508982035928147, "f1_ci": {"90": [0.4049049185589344, 0.5067778692762893], "95": [0.3923199130398428, 0.5195618366745284]}, "precision": 0.4830508474576271, "recall": 0.43018867924528303}, "group": {"f1": 0.5038167938931298, "f1_ci": {"90": [0.44796125194135145, 0.5607960998607093], "95": [0.4362921406545568, 0.5688220314081427]}, "precision": 0.6197183098591549, "recall": 0.42443729903536975}, "location": {"f1": 0.6026490066225166, "f1_ci": {"90": [0.5320404782483434, 0.6629593282072034], "95": [0.5245744513696118, 0.6756140811769343]}, "precision": 0.6642335766423357, "recall": 0.5515151515151515}, "person": {"f1": 0.8062283737024222, "f1_ci": {"90": [0.7760587632959272, 0.8315361561829818], "95": [0.7698106545550611, 0.8356172784193372]}, "precision": 0.8321428571428572, "recall": 0.7818791946308725}, "product": {"f1": 0.6811594202898551, "f1_ci": {"90": [0.6246480367439654, 0.730964467005076], "95": [0.6142940723633565, 0.7381622865912144]}, "precision": 0.7268041237113402, "recall": 0.6409090909090909}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6319818203564167, "micro/f1_ci": {"90": [0.6231013705127983, 0.6413574593408826], "95": [0.6217502353949177, 0.6428942705896876]}, "micro/recall": 0.6110083256244219, "micro/precision": 0.6544463710676245, "macro/f1": 0.5766988664971804, "macro/f1_ci": {"90": [0.5664509989359489, 0.5863507925127135], "95": [0.5648974825471297, 0.5879845963012866]}, "macro/recall": 0.5559244768648601, "macro/precision": 0.601237684920777, "per_entity_metric": {"corporation": {"f1": 0.514024041213509, "f1_ci": {"90": [0.48777635327635327, 0.5386428764634433], "95": [0.48256682507571314, 0.5427950687007129]}, "precision": 0.5301062573789846, "recall": 0.4988888888888889}, "creative_work": {"f1": 0.39736070381231675, "f1_ci": {"90": [0.3673069143565192, 0.4290928789350539], "95": [0.35964709226770636, 0.43496810207336517]}, "precision": 0.42812006319115326, "recall": 0.3707250341997264}, "event": {"f1": 0.42546740778170794, "f1_ci": {"90": [0.40080966868711565, 0.4504934716037546], "95": [0.3947971875592656, 0.45604206362953986]}, "precision": 0.4784090909090909, "recall": 0.3830755232029117}, "group": {"f1": 0.5859649122807017, "f1_ci": {"90": [0.5649910032383042, 0.608005869697348], "95": [0.5609718872903313, 0.6137378755305175]}, "precision": 0.6268768768768769, "recall": 0.5500658761528326}, "location": {"f1": 0.6335664335664336, "f1_ci": {"90": [0.6022469573815304, 0.662564426082152], "95": [0.5972619047619048, 0.6684591503346138]}, "precision": 0.634453781512605, "recall": 0.63268156424581}, "person": {"f1": 0.8127490039840638, "f1_ci": {"90": [0.8007926572866582, 0.8249959351621283], "95": [0.7984037478689154, 0.8268196857132452]}, "precision": 0.798576512455516, "recall": 0.827433628318584}, "product": {"f1": 0.6677595628415302, "f1_ci": {"90": [0.6464189850752727, 0.6878997822678681], "95": [0.6421587454017522, 0.6913517415533396]}, "precision": 0.7121212121212122, "recall": 0.6286008230452675}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7245559627854524, "micro/f1_ci": {}, "micro/recall": 0.6668396471198754, "micro/precision": 0.7932098765432098, "macro/f1": 0.7245559627854524, "macro/f1_ci": {}, "macro/recall": 0.6668396471198754, "macro/precision": 0.7932098765432098}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7603780356501973, "micro/f1_ci": {}, "micro/recall": 0.7350526194055742, "micro/precision": 0.7875108412836079, "macro/f1": 0.7603780356501973, "macro/f1_ci": {}, "macro/recall": 0.7350526194055742, "macro/precision": 0.7875108412836079}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/bert-large-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-06, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|