model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bert-large-tweetner7-2021
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.5974718775368201
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.5992091183996279
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.5957446808510638
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5392877076670867
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5398425980592713
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5439768272225339
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7497514474530674
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7584003786086133
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7412975598473459
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.5662616558349817
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6215880893300249
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.519979242345615
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5096985017746614
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.5628721370469417
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.47520198274721537
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7065868263473053
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7841772151898734
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6429683445770628
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bert-large-tweetner7-2021
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.5974718775368201
|
94 |
+
- Precision (micro): 0.5992091183996279
|
95 |
+
- Recall (micro): 0.5957446808510638
|
96 |
+
- F1 (macro): 0.5392877076670867
|
97 |
+
- Precision (macro): 0.5398425980592713
|
98 |
+
- Recall (macro): 0.5439768272225339
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.4486772486772486
|
104 |
+
- creative_work: 0.34173228346456697
|
105 |
+
- event: 0.40238450074515647
|
106 |
+
- group: 0.556795797767564
|
107 |
+
- location: 0.6394904458598726
|
108 |
+
- person: 0.7940364439536168
|
109 |
+
- product: 0.5918972332015809
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.5884763705775744, 0.6075466841645367]
|
114 |
+
- 95%: [0.586724466800271, 0.6087071446445204]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.5884763705775744, 0.6075466841645367]
|
117 |
+
- 95%: [0.586724466800271, 0.6087071446445204]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-large-tweetner7-2021/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bert-large-tweetner7-2021/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bert-large-tweetner7-2021")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: bert-large-cased
|
143 |
+
- crf: False
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-large-tweetner7-2021/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.601733809280979, "micro/f1_ci": {}, "micro/recall": 0.59, "micro/precision": 0.6139438085327783, "macro/f1": 0.5530417662709053, "macro/f1_ci": {}, "macro/recall": 0.5475419587120097, "macro/precision": 0.5634379470607581, "per_entity_metric": {"corporation": {"f1": 0.5781990521327014, "f1_ci": {}, "precision": 0.5596330275229358, "recall": 0.5980392156862745}, "creative_work": {"f1": 0.3787878787878788, "f1_ci": {}, "precision": 0.43103448275862066, "recall": 0.33783783783783783}, "event": {"f1": 0.3620689655172413, "f1_ci": {}, "precision": 0.4158415841584158, "recall": 0.32061068702290074}, "group": {"f1": 0.570754716981132, "f1_ci": {}, "precision": 0.6142131979695431, "recall": 0.5330396475770925}, "location": {"f1": 0.6081081081081081, "f1_ci": {}, "precision": 0.5921052631578947, "recall": 0.625}, "person": {"f1": 0.7794871794871795, "f1_ci": {}, "precision": 0.7549668874172185, "recall": 0.8056537102473498}, "product": {"f1": 0.5938864628820961, "f1_ci": {}, "precision": 0.576271186440678, "recall": 0.6126126126126126}}}, "2021.test": {"micro/f1": 0.5974718775368201, "micro/f1_ci": {"90": [0.5884763705775744, 0.6075466841645367], "95": [0.586724466800271, 0.6087071446445204]}, "micro/recall": 0.5957446808510638, "micro/precision": 0.5992091183996279, "macro/f1": 0.5392877076670867, "macro/f1_ci": {"90": [0.530098896055678, 0.5492366033043069], "95": [0.5284763359472952, 0.5509592237769576]}, "macro/recall": 0.5439768272225339, "macro/precision": 0.5398425980592713, "per_entity_metric": {"corporation": {"f1": 0.4486772486772486, "f1_ci": {"90": [0.42374195222512145, 0.47198702010198484], "95": [0.41629960888760914, 0.47854513512534524]}, "precision": 0.42828282828282827, "recall": 0.4711111111111111}, "creative_work": {"f1": 0.34173228346456697, "f1_ci": {"90": [0.3111668229783637, 0.3751494936931258], "95": [0.30621243300153134, 0.38118272627922994]}, "precision": 0.4025974025974026, "recall": 0.2968536251709986}, "event": {"f1": 0.40238450074515647, "f1_ci": {"90": [0.3771082185375127, 0.4253969451946884], "95": [0.37377656250240715, 0.4304793666363063]}, "precision": 0.4431072210065646, "recall": 0.3685168334849864}, "group": {"f1": 0.556795797767564, "f1_ci": {"90": [0.5363658468635578, 0.578533580955637], "95": [0.5326958637709951, 0.5829043388575683]}, "precision": 0.5549738219895288, "recall": 0.5586297760210803}, "location": {"f1": 0.6394904458598726, "f1_ci": {"90": [0.6134667630913595, 0.6658640097485297], "95": [0.6058188339438338, 0.6704738910012674]}, "precision": 0.5878220140515222, "recall": 0.7011173184357542}, "person": {"f1": 0.7940364439536168, "f1_ci": {"90": [0.7825427984149077, 0.8055708929917582], "95": [0.7796777233643017, 0.8077754587411615]}, "precision": 0.7927232635060639, "recall": 0.7953539823008849}, "product": {"f1": 0.5918972332015809, "f1_ci": {"90": [0.56762739781335, 0.6126945509284936], "95": [0.5640013221511239, 0.6161674947859158]}, "precision": 0.5693916349809885, "recall": 0.6162551440329218}}}, "2020.test": {"micro/f1": 0.5662616558349817, "micro/f1_ci": {"90": [0.5454995934256639, 0.5875092213706942], "95": [0.5425866998697456, 0.5920983770545653]}, "micro/recall": 0.519979242345615, "micro/precision": 0.6215880893300249, "macro/f1": 0.5096985017746614, "macro/f1_ci": {"90": [0.48748317612063496, 0.5319882567266163], "95": [0.4844618671113482, 0.5363490059404551]}, "macro/recall": 0.47520198274721537, "macro/precision": 0.5628721370469417, "per_entity_metric": {"corporation": {"f1": 0.4931506849315068, "f1_ci": {"90": [0.43111058336584623, 0.5454765041721563], "95": [0.4235045567522783, 0.554688888888889]}, "precision": 0.5172413793103449, "recall": 0.4712041884816754}, "creative_work": {"f1": 0.3157894736842105, "f1_ci": {"90": [0.25305184142622567, 0.37604984025559096], "95": [0.23929824561403507, 0.3846219931271478]}, "precision": 0.4827586206896552, "recall": 0.2346368715083799}, "event": {"f1": 0.30385487528344673, "f1_ci": {"90": [0.2511617287883615, 0.3582357271936283], "95": [0.2435547967917763, 0.3728851647305275]}, "precision": 0.3806818181818182, "recall": 0.2528301886792453}, "group": {"f1": 0.502692998204668, "f1_ci": {"90": [0.45108915906788244, 0.5562174896540221], "95": [0.43689164466435204, 0.5718759253384094]}, "precision": 0.5691056910569106, "recall": 0.45016077170418006}, "location": {"f1": 0.5975609756097562, "f1_ci": {"90": [0.5342913251566929, 0.6546546546546547], "95": [0.5232513416815743, 0.6645611137764328]}, "precision": 0.6012269938650306, "recall": 0.593939393939394}, "person": {"f1": 0.7607361963190183, "f1_ci": {"90": [0.7331188694509051, 0.7864466361308117], "95": [0.7277244030211747, 0.7904014991482111]}, "precision": 0.7963302752293578, "recall": 0.7281879194630873}, "product": {"f1": 0.5941043083900227, "f1_ci": {"90": [0.5444883712647363, 0.6420348374103892], "95": [0.5323734534856055, 0.6513813358794469]}, "precision": 0.5927601809954751, "recall": 0.5954545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7497514474530674, "micro/f1_ci": {}, "micro/recall": 0.7412975598473459, "micro/precision": 0.7584003786086133, "macro/f1": 0.7497514474530674, "macro/f1_ci": {}, "macro/recall": 0.7412975598473459, "macro/precision": 0.7584003786086133}, "2020.test (span detection)": {"micro/f1": 0.7065868263473053, "micro/f1_ci": {}, "micro/recall": 0.6429683445770628, "micro/precision": 0.7841772151898734, "macro/f1": 0.7065868263473053, "macro/f1_ci": {}, "macro/recall": 0.6429683445770628, "macro/precision": 0.7841772151898734}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.5662616558349817, "micro/f1_ci": {"90": [0.5454995934256639, 0.5875092213706942], "95": [0.5425866998697456, 0.5920983770545653]}, "micro/recall": 0.519979242345615, "micro/precision": 0.6215880893300249, "macro/f1": 0.5096985017746614, "macro/f1_ci": {"90": [0.48748317612063496, 0.5319882567266163], "95": [0.4844618671113482, 0.5363490059404551]}, "macro/recall": 0.47520198274721537, "macro/precision": 0.5628721370469417, "per_entity_metric": {"corporation": {"f1": 0.4931506849315068, "f1_ci": {"90": [0.43111058336584623, 0.5454765041721563], "95": [0.4235045567522783, 0.554688888888889]}, "precision": 0.5172413793103449, "recall": 0.4712041884816754}, "creative_work": {"f1": 0.3157894736842105, "f1_ci": {"90": [0.25305184142622567, 0.37604984025559096], "95": [0.23929824561403507, 0.3846219931271478]}, "precision": 0.4827586206896552, "recall": 0.2346368715083799}, "event": {"f1": 0.30385487528344673, "f1_ci": {"90": [0.2511617287883615, 0.3582357271936283], "95": [0.2435547967917763, 0.3728851647305275]}, "precision": 0.3806818181818182, "recall": 0.2528301886792453}, "group": {"f1": 0.502692998204668, "f1_ci": {"90": [0.45108915906788244, 0.5562174896540221], "95": [0.43689164466435204, 0.5718759253384094]}, "precision": 0.5691056910569106, "recall": 0.45016077170418006}, "location": {"f1": 0.5975609756097562, "f1_ci": {"90": [0.5342913251566929, 0.6546546546546547], "95": [0.5232513416815743, 0.6645611137764328]}, "precision": 0.6012269938650306, "recall": 0.593939393939394}, "person": {"f1": 0.7607361963190183, "f1_ci": {"90": [0.7331188694509051, 0.7864466361308117], "95": [0.7277244030211747, 0.7904014991482111]}, "precision": 0.7963302752293578, "recall": 0.7281879194630873}, "product": {"f1": 0.5941043083900227, "f1_ci": {"90": [0.5444883712647363, 0.6420348374103892], "95": [0.5323734534856055, 0.6513813358794469]}, "precision": 0.5927601809954751, "recall": 0.5954545454545455}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.5974718775368201, "micro/f1_ci": {"90": [0.5884763705775744, 0.6075466841645367], "95": [0.586724466800271, 0.6087071446445204]}, "micro/recall": 0.5957446808510638, "micro/precision": 0.5992091183996279, "macro/f1": 0.5392877076670867, "macro/f1_ci": {"90": [0.530098896055678, 0.5492366033043069], "95": [0.5284763359472952, 0.5509592237769576]}, "macro/recall": 0.5439768272225339, "macro/precision": 0.5398425980592713, "per_entity_metric": {"corporation": {"f1": 0.4486772486772486, "f1_ci": {"90": [0.42374195222512145, 0.47198702010198484], "95": [0.41629960888760914, 0.47854513512534524]}, "precision": 0.42828282828282827, "recall": 0.4711111111111111}, "creative_work": {"f1": 0.34173228346456697, "f1_ci": {"90": [0.3111668229783637, 0.3751494936931258], "95": [0.30621243300153134, 0.38118272627922994]}, "precision": 0.4025974025974026, "recall": 0.2968536251709986}, "event": {"f1": 0.40238450074515647, "f1_ci": {"90": [0.3771082185375127, 0.4253969451946884], "95": [0.37377656250240715, 0.4304793666363063]}, "precision": 0.4431072210065646, "recall": 0.3685168334849864}, "group": {"f1": 0.556795797767564, "f1_ci": {"90": [0.5363658468635578, 0.578533580955637], "95": [0.5326958637709951, 0.5829043388575683]}, "precision": 0.5549738219895288, "recall": 0.5586297760210803}, "location": {"f1": 0.6394904458598726, "f1_ci": {"90": [0.6134667630913595, 0.6658640097485297], "95": [0.6058188339438338, 0.6704738910012674]}, "precision": 0.5878220140515222, "recall": 0.7011173184357542}, "person": {"f1": 0.7940364439536168, "f1_ci": {"90": [0.7825427984149077, 0.8055708929917582], "95": [0.7796777233643017, 0.8077754587411615]}, "precision": 0.7927232635060639, "recall": 0.7953539823008849}, "product": {"f1": 0.5918972332015809, "f1_ci": {"90": [0.56762739781335, 0.6126945509284936], "95": [0.5640013221511239, 0.6161674947859158]}, "precision": 0.5693916349809885, "recall": 0.6162551440329218}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7065868263473053, "micro/f1_ci": {}, "micro/recall": 0.6429683445770628, "micro/precision": 0.7841772151898734, "macro/f1": 0.7065868263473053, "macro/f1_ci": {}, "macro/recall": 0.6429683445770628, "macro/precision": 0.7841772151898734}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7497514474530674, "micro/f1_ci": {}, "micro/recall": 0.7412975598473459, "micro/precision": 0.7584003786086133, "macro/f1": 0.7497514474530674, "macro/f1_ci": {}, "macro/recall": 0.7412975598473459, "macro/precision": 0.7584003786086133}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "bert-large-cased", "crf": false, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|