model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bert-base-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.609117361784675
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6011938281337988
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6172525439407955
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.559165089199025
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5499368578582033
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.5694430718770875
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7572194954913822
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7474929577464788
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7672024979761767
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6103825136612021
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6445470282746683
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.5796574987026466
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.5675359874657813
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6021803835272678
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5387624182505003
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7273224043715847
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7680323139065205
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.6907109496626881
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bert-base-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.609117361784675
|
94 |
+
- Precision (micro): 0.6011938281337988
|
95 |
+
- Recall (micro): 0.6172525439407955
|
96 |
+
- F1 (macro): 0.559165089199025
|
97 |
+
- Precision (macro): 0.5499368578582033
|
98 |
+
- Recall (macro): 0.5694430718770875
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.46514047866805414
|
104 |
+
- creative_work: 0.3904698874917273
|
105 |
+
- event: 0.4183066361556064
|
106 |
+
- group: 0.5614035087719299
|
107 |
+
- location: 0.6389645776566757
|
108 |
+
- person: 0.8044590643274854
|
109 |
+
- product: 0.6354114713216957
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6000414265573856, 0.6190415373631918]
|
114 |
+
- 95%: [0.5981509067764902, 0.6206829089362571]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6000414265573856, 0.6190415373631918]
|
117 |
+
- 95%: [0.5981509067764902, 0.6206829089362571]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bert-base-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bert-base-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bert-base-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: bert-base-cased
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bert-base-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.6192560175054704, "micro/f1_ci": {}, "micro/recall": 0.604378003203417, "micro/precision": 0.6348850252383623, "macro/f1": 0.5735999549689017, "macro/f1_ci": {}, "macro/recall": 0.5597621939973553, "macro/precision": 0.5895208320445692, "per_entity_metric": {"corporation": {"f1": 0.5524296675191815, "f1_ci": {}, "precision": 0.5454545454545454, "recall": 0.5595854922279793}, "creative_work": {"f1": 0.445141065830721, "f1_ci": {}, "precision": 0.45222929936305734, "recall": 0.4382716049382716}, "event": {"f1": 0.3439490445859873, "f1_ci": {}, "precision": 0.3584070796460177, "recall": 0.3306122448979592}, "group": {"f1": 0.5902668759811617, "f1_ci": {}, "precision": 0.6460481099656358, "recall": 0.5433526011560693}, "location": {"f1": 0.624203821656051, "f1_ci": {}, "precision": 0.6490066225165563, "recall": 0.6012269938650306}, "person": {"f1": 0.8240740740740741, "f1_ci": {}, "precision": 0.8135283363802559, "recall": 0.8348968105065666}, "product": {"f1": 0.6351351351351351, "f1_ci": {}, "precision": 0.6619718309859155, "recall": 0.6103896103896104}}}, "2021.test": {"micro/f1": 0.609117361784675, "micro/f1_ci": {"90": [0.6000414265573856, 0.6190415373631918], "95": [0.5981509067764902, 0.6206829089362571]}, "micro/recall": 0.6172525439407955, "micro/precision": 0.6011938281337988, "macro/f1": 0.559165089199025, "macro/f1_ci": {"90": [0.5497301707952231, 0.5689166903459428], "95": [0.5476856978181925, 0.5710003811206343]}, "macro/recall": 0.5694430718770875, "macro/precision": 0.5499368578582033, "per_entity_metric": {"corporation": {"f1": 0.46514047866805414, "f1_ci": {"90": [0.4422362753387115, 0.48909159792525936], "95": [0.43623003635525726, 0.49374912858221975]}, "precision": 0.43737769080234834, "recall": 0.49666666666666665}, "creative_work": {"f1": 0.3904698874917273, "f1_ci": {"90": [0.36092434680684116, 0.4211238997968856], "95": [0.35687967318425945, 0.42683661009613894]}, "precision": 0.3782051282051282, "recall": 0.40355677154582764}, "event": {"f1": 0.4183066361556064, "f1_ci": {"90": [0.39546956111373294, 0.4397802739202638], "95": [0.39134522763851565, 0.44413293286890765]}, "precision": 0.4208103130755064, "recall": 0.41583257506824384}, "group": {"f1": 0.5614035087719299, "f1_ci": {"90": [0.5405763591247462, 0.5834728306426968], "95": [0.5359571482288267, 0.5869609145475759]}, "precision": 0.5753803596127247, "recall": 0.5480895915678524}, "location": {"f1": 0.6389645776566757, "f1_ci": {"90": [0.6109104048765331, 0.6688442881364794], "95": [0.605244670105696, 0.6721568117825428]}, "precision": 0.6236702127659575, "recall": 0.6550279329608939}, "person": {"f1": 0.8044590643274854, "f1_ci": {"90": [0.7932438610200235, 0.8160130648695689], "95": [0.7909297225622194, 0.8184663212435235]}, "precision": 0.797463768115942, "recall": 0.8115781710914455}, "product": {"f1": 0.6354114713216957, "f1_ci": {"90": [0.6130714623048149, 0.6565474489604781], "95": [0.6085662982071728, 0.6597266285956008]}, "precision": 0.616650532429816, "recall": 0.6553497942386831}}}, "2020.test": {"micro/f1": 0.6103825136612021, "micro/f1_ci": {"90": [0.5886597809593919, 0.630754232709721], "95": [0.5853510478005706, 0.6344224019458733]}, "micro/recall": 0.5796574987026466, "micro/precision": 0.6445470282746683, "macro/f1": 0.5675359874657813, "macro/f1_ci": {"90": [0.5455416290059489, 0.5872544909762225], "95": [0.5421124912878689, 0.5910870158401571]}, "macro/recall": 0.5387624182505003, "macro/precision": 0.6021803835272678, "per_entity_metric": {"corporation": {"f1": 0.539440203562341, "f1_ci": {"90": [0.48223350253807107, 0.5925925925925926], "95": [0.47027027027027024, 0.6024160642570282]}, "precision": 0.5247524752475248, "recall": 0.5549738219895288}, "creative_work": {"f1": 0.42771084337349397, "f1_ci": {"90": [0.3701389008713657, 0.48001129943502824], "95": [0.35945076955513383, 0.4898017326588755]}, "precision": 0.46405228758169936, "recall": 0.39664804469273746}, "event": {"f1": 0.39147286821705424, "f1_ci": {"90": [0.3423689033075527, 0.4384615384615384], "95": [0.33401924920284043, 0.4479486677526936]}, "precision": 0.40239043824701193, "recall": 0.38113207547169814}, "group": {"f1": 0.5306859205776173, "f1_ci": {"90": [0.4740687545714476, 0.5835123669931646], "95": [0.4626316755585294, 0.5926018983807928]}, "precision": 0.6049382716049383, "recall": 0.47266881028938906}, "location": {"f1": 0.6266666666666666, "f1_ci": {"90": [0.5584730144800351, 0.689055929352397], "95": [0.5435147751150357, 0.7016515521450994]}, "precision": 0.6962962962962963, "recall": 0.5696969696969697}, "person": {"f1": 0.805944055944056, "f1_ci": {"90": [0.7759176252073368, 0.8316523801385778], "95": [0.7702132619352088, 0.8373703976596187]}, "precision": 0.8412408759124088, "recall": 0.7734899328859061}, "product": {"f1": 0.6508313539192399, "f1_ci": {"90": [0.6010349610090543, 0.6958744811793329], "95": [0.5892310901468917, 0.7061625360343002]}, "precision": 0.681592039800995, "recall": 0.6227272727272727}}}, "2021.test (span detection)": {"micro/f1": 0.7572194954913822, "micro/f1_ci": {}, "micro/recall": 0.7672024979761767, "micro/precision": 0.7474929577464788, "macro/f1": 0.7572194954913822, "macro/f1_ci": {}, "macro/recall": 0.7672024979761767, "macro/precision": 0.7474929577464788}, "2020.test (span detection)": {"micro/f1": 0.7273224043715847, "micro/f1_ci": {}, "micro/recall": 0.6907109496626881, "micro/precision": 0.7680323139065205, "macro/f1": 0.7273224043715847, "macro/f1_ci": {}, "macro/recall": 0.6907109496626881, "macro/precision": 0.7680323139065205}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6103825136612021, "micro/f1_ci": {"90": [0.5886597809593919, 0.630754232709721], "95": [0.5853510478005706, 0.6344224019458733]}, "micro/recall": 0.5796574987026466, "micro/precision": 0.6445470282746683, "macro/f1": 0.5675359874657813, "macro/f1_ci": {"90": [0.5455416290059489, 0.5872544909762225], "95": [0.5421124912878689, 0.5910870158401571]}, "macro/recall": 0.5387624182505003, "macro/precision": 0.6021803835272678, "per_entity_metric": {"corporation": {"f1": 0.539440203562341, "f1_ci": {"90": [0.48223350253807107, 0.5925925925925926], "95": [0.47027027027027024, 0.6024160642570282]}, "precision": 0.5247524752475248, "recall": 0.5549738219895288}, "creative_work": {"f1": 0.42771084337349397, "f1_ci": {"90": [0.3701389008713657, 0.48001129943502824], "95": [0.35945076955513383, 0.4898017326588755]}, "precision": 0.46405228758169936, "recall": 0.39664804469273746}, "event": {"f1": 0.39147286821705424, "f1_ci": {"90": [0.3423689033075527, 0.4384615384615384], "95": [0.33401924920284043, 0.4479486677526936]}, "precision": 0.40239043824701193, "recall": 0.38113207547169814}, "group": {"f1": 0.5306859205776173, "f1_ci": {"90": [0.4740687545714476, 0.5835123669931646], "95": [0.4626316755585294, 0.5926018983807928]}, "precision": 0.6049382716049383, "recall": 0.47266881028938906}, "location": {"f1": 0.6266666666666666, "f1_ci": {"90": [0.5584730144800351, 0.689055929352397], "95": [0.5435147751150357, 0.7016515521450994]}, "precision": 0.6962962962962963, "recall": 0.5696969696969697}, "person": {"f1": 0.805944055944056, "f1_ci": {"90": [0.7759176252073368, 0.8316523801385778], "95": [0.7702132619352088, 0.8373703976596187]}, "precision": 0.8412408759124088, "recall": 0.7734899328859061}, "product": {"f1": 0.6508313539192399, "f1_ci": {"90": [0.6010349610090543, 0.6958744811793329], "95": [0.5892310901468917, 0.7061625360343002]}, "precision": 0.681592039800995, "recall": 0.6227272727272727}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.609117361784675, "micro/f1_ci": {"90": [0.6000414265573856, 0.6190415373631918], "95": [0.5981509067764902, 0.6206829089362571]}, "micro/recall": 0.6172525439407955, "micro/precision": 0.6011938281337988, "macro/f1": 0.559165089199025, "macro/f1_ci": {"90": [0.5497301707952231, 0.5689166903459428], "95": [0.5476856978181925, 0.5710003811206343]}, "macro/recall": 0.5694430718770875, "macro/precision": 0.5499368578582033, "per_entity_metric": {"corporation": {"f1": 0.46514047866805414, "f1_ci": {"90": [0.4422362753387115, 0.48909159792525936], "95": [0.43623003635525726, 0.49374912858221975]}, "precision": 0.43737769080234834, "recall": 0.49666666666666665}, "creative_work": {"f1": 0.3904698874917273, "f1_ci": {"90": [0.36092434680684116, 0.4211238997968856], "95": [0.35687967318425945, 0.42683661009613894]}, "precision": 0.3782051282051282, "recall": 0.40355677154582764}, "event": {"f1": 0.4183066361556064, "f1_ci": {"90": [0.39546956111373294, 0.4397802739202638], "95": [0.39134522763851565, 0.44413293286890765]}, "precision": 0.4208103130755064, "recall": 0.41583257506824384}, "group": {"f1": 0.5614035087719299, "f1_ci": {"90": [0.5405763591247462, 0.5834728306426968], "95": [0.5359571482288267, 0.5869609145475759]}, "precision": 0.5753803596127247, "recall": 0.5480895915678524}, "location": {"f1": 0.6389645776566757, "f1_ci": {"90": [0.6109104048765331, 0.6688442881364794], "95": [0.605244670105696, 0.6721568117825428]}, "precision": 0.6236702127659575, "recall": 0.6550279329608939}, "person": {"f1": 0.8044590643274854, "f1_ci": {"90": [0.7932438610200235, 0.8160130648695689], "95": [0.7909297225622194, 0.8184663212435235]}, "precision": 0.797463768115942, "recall": 0.8115781710914455}, "product": {"f1": 0.6354114713216957, "f1_ci": {"90": [0.6130714623048149, 0.6565474489604781], "95": [0.6085662982071728, 0.6597266285956008]}, "precision": 0.616650532429816, "recall": 0.6553497942386831}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7273224043715847, "micro/f1_ci": {}, "micro/recall": 0.6907109496626881, "micro/precision": 0.7680323139065205, "macro/f1": 0.7273224043715847, "macro/f1_ci": {}, "macro/recall": 0.6907109496626881, "macro/precision": 0.7680323139065205}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7572194954913822, "micro/f1_ci": {}, "micro/recall": 0.7672024979761767, "micro/precision": 0.7474929577464788, "macro/f1": 0.7572194954913822, "macro/f1_ci": {}, "macro/recall": 0.7672024979761767, "macro/precision": 0.7474929577464788}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "bert-base-cased", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|