|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """PyTorch NEW model.""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutput, | 
					
						
						|  | BaseModelOutputWithPooling, | 
					
						
						|  | MaskedLMOutput, | 
					
						
						|  | MultipleChoiceModelOutput, | 
					
						
						|  | QuestionAnsweringModelOutput, | 
					
						
						|  | SequenceClassifierOutput, | 
					
						
						|  | ModelOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | import xformers.ops as xops | 
					
						
						|  | except ImportError as e: | 
					
						
						|  | xops = None | 
					
						
						|  |  | 
					
						
						|  | from .configuration import NewConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class IndexFirstAxis(torch.autograd.Function): | 
					
						
						|  | @staticmethod | 
					
						
						|  | def forward(ctx, input, indices): | 
					
						
						|  | ctx.save_for_backward(indices) | 
					
						
						|  | assert input.ndim >= 2 | 
					
						
						|  | ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] | 
					
						
						|  | second_dim = other_shape.numel() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return torch.gather( | 
					
						
						|  | input.view(ctx.first_axis_dim, second_dim), | 
					
						
						|  | 0, | 
					
						
						|  | indices.unsqueeze(-1).expand(indices.size(0), second_dim) | 
					
						
						|  | ).reshape(-1, *other_shape) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def backward(ctx, grad_output): | 
					
						
						|  | (indices,) = ctx.saved_tensors | 
					
						
						|  | assert grad_output.ndim >= 2 | 
					
						
						|  | other_shape = grad_output.shape[1:] | 
					
						
						|  |  | 
					
						
						|  | grad_output = grad_output.view(grad_output.size(0), other_shape.numel()) | 
					
						
						|  | grad_input = torch.zeros( | 
					
						
						|  | [ctx.first_axis_dim, grad_output.shape[1]], | 
					
						
						|  | device=grad_output.device, | 
					
						
						|  | dtype=grad_output.dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | grad_input.scatter_( | 
					
						
						|  | 0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output | 
					
						
						|  | ) | 
					
						
						|  | return grad_input.reshape(ctx.first_axis_dim, *other_shape), None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | index_first_axis = IndexFirstAxis.apply | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def unpad_input(hidden_states, attention_mask=None, indices=None): | 
					
						
						|  | """ | 
					
						
						|  | Arguments: | 
					
						
						|  | hidden_states: (batch, seqlen, ...) | 
					
						
						|  | attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. | 
					
						
						|  | indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence. | 
					
						
						|  | Return: | 
					
						
						|  | hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. | 
					
						
						|  | """ | 
					
						
						|  | if indices is None: | 
					
						
						|  | assert attention_mask is not None | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.view(-1, *hidden_states.shape[2:]) | 
					
						
						|  | return index_first_axis(hidden_states, indices) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class IndexPutFirstAxis(torch.autograd.Function): | 
					
						
						|  | @staticmethod | 
					
						
						|  | def forward( | 
					
						
						|  | ctx, | 
					
						
						|  | values: torch.Tensor, | 
					
						
						|  | indices: torch.Tensor, | 
					
						
						|  | first_axis_dim | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | ctx.save_for_backward(indices) | 
					
						
						|  | assert indices.ndim == 1 | 
					
						
						|  | assert values.ndim >= 2 | 
					
						
						|  | output = torch.zeros( | 
					
						
						|  | first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype | 
					
						
						|  | ) | 
					
						
						|  | output[indices] = values | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]: | 
					
						
						|  | indices, = ctx.saved_tensors | 
					
						
						|  | grad_values = grad_output[indices] | 
					
						
						|  | return grad_values, None, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | index_put_first_axis = IndexPutFirstAxis.apply | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor: | 
					
						
						|  | """Add padding to sequences. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. | 
					
						
						|  | indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()` | 
					
						
						|  | batch: int batch_size | 
					
						
						|  | seqlen: int max sequence length | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | inputs: (batch, seqlen, ...) | 
					
						
						|  | """ | 
					
						
						|  | output = index_put_first_axis(inputs, indices, batch * seqlen) | 
					
						
						|  | return output.view(batch, seqlen, *inputs.shape[1:]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos, sin = cos.to(q.dtype), sin.to(q.dtype) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RotaryEmbedding(torch.nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len, ...].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len, ...].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NTKScalingRotaryEmbedding(RotaryEmbedding): | 
					
						
						|  | """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | self.mixed_b = mixed_b | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  | max_position_embeddings = max_position_embeddings * self.scaling_factor | 
					
						
						|  | self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype()) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_position_embeddings: | 
					
						
						|  | base = self.base * (self.scaling_factor if self.mixed_b is None else 1) | 
					
						
						|  | inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  |  | 
					
						
						|  | if self.mixed_b is None: | 
					
						
						|  | inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) | 
					
						
						|  | else: | 
					
						
						|  | a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b | 
					
						
						|  | lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() | 
					
						
						|  | inv_freq = inv_freq / lambda_1_m | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | RMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LAYER_NORM = { | 
					
						
						|  | 'layer_norm': nn.LayerNorm, | 
					
						
						|  | 'rms_norm': RMSNorm | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewEmbeddings(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Embedding and Unpadding. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: NewConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.word_embeddings = nn.Embedding( | 
					
						
						|  | config.vocab_size, config.hidden_size, padding_idx=self.padding_idx | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.position_embedding_type = config.position_embedding_type | 
					
						
						|  | if self.position_embedding_type == 'absolute': | 
					
						
						|  | self.position_embeddings = nn.Embedding( | 
					
						
						|  | config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | 
					
						
						|  | ) | 
					
						
						|  | elif self.position_embedding_type == 'rope': | 
					
						
						|  | self._init_rope(config) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError | 
					
						
						|  |  | 
					
						
						|  | self.type_vocab_size = config.type_vocab_size | 
					
						
						|  | if self.type_vocab_size > 0: | 
					
						
						|  | self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "position_ids", torch.arange(config.max_position_embeddings), persistent=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self, config): | 
					
						
						|  | kwargs = dict( | 
					
						
						|  | dim=int(config.hidden_size / config.num_attention_heads), | 
					
						
						|  | max_position_embeddings=config.max_position_embeddings, | 
					
						
						|  | base=config.rope_theta | 
					
						
						|  | ) | 
					
						
						|  | if config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = RotaryEmbedding(**kwargs) | 
					
						
						|  | else: | 
					
						
						|  | kwargs.update(scaling_factor=config.rope_scaling["factor"]) | 
					
						
						|  | scaling_type = config.rope_scaling["type"] | 
					
						
						|  | if scaling_type == 'ntk': | 
					
						
						|  | kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None)) | 
					
						
						|  | self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | unpad_inputs: bool, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | length: Optional[List[int]] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]: | 
					
						
						|  | """ | 
					
						
						|  | """ | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | device, input_shape = input_ids.device, input_ids.shape | 
					
						
						|  | else: | 
					
						
						|  | device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2] | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones(input_shape, device=device) | 
					
						
						|  | if length is not None: | 
					
						
						|  | for i, l in enumerate(length): | 
					
						
						|  | attention_mask[i, l:] = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if unpad_inputs: | 
					
						
						|  | attention_mask_bool = attention_mask.bool() | 
					
						
						|  | if length is None: | 
					
						
						|  | length = attention_mask.sum(-1).tolist() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | if unpad_inputs: | 
					
						
						|  | input_ids = input_ids[attention_mask_bool].unsqueeze(0) | 
					
						
						|  | inputs_embeds = self.word_embeddings(input_ids) | 
					
						
						|  | else: | 
					
						
						|  | if unpad_inputs: | 
					
						
						|  | inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0) | 
					
						
						|  | embeddings = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | if seq_length > self.position_ids.size(0): | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False | 
					
						
						|  | ) | 
					
						
						|  | if unpad_inputs: | 
					
						
						|  |  | 
					
						
						|  | position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | position_ids = self.position_ids[:seq_length].expand(batch_size, -1) | 
					
						
						|  | elif unpad_inputs: | 
					
						
						|  | position_ids = position_ids[attention_mask_bool].unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.position_embedding_type == 'rope': | 
					
						
						|  | rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length) | 
					
						
						|  | rope_cos = rope_cos[position_ids].unsqueeze(2) | 
					
						
						|  | rope_sin = rope_sin[position_ids].unsqueeze(2) | 
					
						
						|  | rope_embeds = rope_cos, rope_sin | 
					
						
						|  | else: | 
					
						
						|  | rope_embeds = None | 
					
						
						|  |  | 
					
						
						|  | if self.type_vocab_size > 0: | 
					
						
						|  | if token_type_ids is None: | 
					
						
						|  | token_type_ids = position_ids.mul(0) | 
					
						
						|  | else: | 
					
						
						|  | if self.type_vocab_size < 2: | 
					
						
						|  | token_type_ids.mul_(0) | 
					
						
						|  | if unpad_inputs: | 
					
						
						|  | token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | token_type_embeddings = self.token_type_embeddings(token_type_ids) | 
					
						
						|  | embeddings = embeddings + token_type_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.position_embedding_type == "absolute": | 
					
						
						|  | position_embeddings = self.position_embeddings(position_ids) | 
					
						
						|  | embeddings = embeddings + position_embeddings | 
					
						
						|  |  | 
					
						
						|  | embeddings = self.LayerNorm(embeddings) | 
					
						
						|  | embeddings = self.dropout(embeddings) | 
					
						
						|  |  | 
					
						
						|  | return embeddings, attention_mask, rope_embeds, length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewAttention(nn.Module): | 
					
						
						|  | def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | 
					
						
						|  | f"heads ({config.num_attention_heads})" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_attention_heads = config.num_attention_heads | 
					
						
						|  | self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | 
					
						
						|  | self.all_head_size = self.num_attention_heads * self.attention_head_size | 
					
						
						|  |  | 
					
						
						|  | if pack_qkv is None: | 
					
						
						|  | pack_qkv = config.pack_qkv | 
					
						
						|  | self.pack_qkv = pack_qkv | 
					
						
						|  |  | 
					
						
						|  | if self.pack_qkv: | 
					
						
						|  | self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True) | 
					
						
						|  | else: | 
					
						
						|  | self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) | 
					
						
						|  | self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) | 
					
						
						|  | self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) | 
					
						
						|  |  | 
					
						
						|  | self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | 
					
						
						|  | self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) | 
					
						
						|  |  | 
					
						
						|  | if use_memory_efficient_attention is None: | 
					
						
						|  | use_memory_efficient_attention = self.config.use_memory_efficient_attention | 
					
						
						|  | self.use_memory_efficient_attention = use_memory_efficient_attention | 
					
						
						|  | self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention | 
					
						
						|  | if self.use_memory_efficient_attention: | 
					
						
						|  | assert self.memory_efficient_attention is not None, 'please install xformers' | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_bias: torch.FloatTensor, | 
					
						
						|  | rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, | 
					
						
						|  | padding_inputs: Optional[Tuple] = None, | 
					
						
						|  | attention_scale: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | qkv_inputs: Optional[Tuple] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, ...]: | 
					
						
						|  | shape_hd = (self.num_attention_heads, self.attention_head_size) | 
					
						
						|  |  | 
					
						
						|  | if self.pack_qkv and qkv_inputs is None: | 
					
						
						|  | qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | if qkv_inputs is None: | 
					
						
						|  | qkv_inputs = (hidden_states, hidden_states, hidden_states) | 
					
						
						|  | qkv_pack = [ | 
					
						
						|  | getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv') | 
					
						
						|  | ] | 
					
						
						|  | query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack] | 
					
						
						|  |  | 
					
						
						|  | if self.config.position_embedding_type == 'rope': | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds) | 
					
						
						|  |  | 
					
						
						|  | dtype = query_states.dtype | 
					
						
						|  |  | 
					
						
						|  | if self.config.logn_attention_scale and attention_scale is not None: | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states * attention_scale.to(dtype) | 
					
						
						|  |  | 
					
						
						|  | if padding_inputs is not None: | 
					
						
						|  | query_states = pad_input(query_states.squeeze(), *padding_inputs) | 
					
						
						|  | key_states = pad_input(key_states.squeeze(), *padding_inputs) | 
					
						
						|  | value_states = pad_input(value_states.squeeze(), *padding_inputs) | 
					
						
						|  |  | 
					
						
						|  | if self.use_memory_efficient_attention: | 
					
						
						|  | assert self.memory_efficient_attention is not None, "xformers is not loaded" | 
					
						
						|  | assert output_attentions is False, "memory_efficient_attention do not output attentions" | 
					
						
						|  | assert head_mask is None, "Not support yet" | 
					
						
						|  | attention_probs = None | 
					
						
						|  | if torch.is_tensor(attention_bias): | 
					
						
						|  | attention_bias = attention_bias.to(dtype) | 
					
						
						|  | context_layer = self.memory_efficient_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_bias=attention_bias, | 
					
						
						|  | p=self.dropout.p | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | if output_attentions and isinstance(self, NewSdpaAttention): | 
					
						
						|  | raise RuntimeError("SDPA do not output attentions") | 
					
						
						|  | context_layer, attention_probs = self._attention( | 
					
						
						|  | query_states, key_states, value_states, attention_bias, head_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if padding_inputs is not None: | 
					
						
						|  | context_layer = unpad_input(context_layer, indices=padding_inputs[0]) | 
					
						
						|  |  | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | 
					
						
						|  | context_layer = context_layer.view(new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(context_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = (attn_output, attention_probs) if output_attentions else (attn_output,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def _attention(self, query_states, key_states, value_states, attention_bias, head_mask): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | q/k/v: (B, L, n_head, head_dim), | 
					
						
						|  | Returns: | 
					
						
						|  | attn_output: (B L, n_head, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores / math.sqrt(self.attention_head_size) | 
					
						
						|  | if attention_bias is not None: | 
					
						
						|  |  | 
					
						
						|  | attention_scores = attention_scores + attention_bias | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = nn.functional.softmax(attention_scores, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.dropout.p > 0: | 
					
						
						|  | attention_probs = self.dropout(attention_probs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None: | 
					
						
						|  | attention_probs = attention_probs * head_mask | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.matmul(attention_probs, value_states) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | return context_layer, attention_probs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewSdpaAttention(NewAttention): | 
					
						
						|  | """ | 
					
						
						|  | New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  | def __init__(self, config: NewConfig, **kwargs): | 
					
						
						|  | super().__init__(config, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _attention(self, query_states, key_states, value_states, attention_bias, head_mask): | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states.transpose(1, 2), | 
					
						
						|  | key_states.transpose(1, 2), | 
					
						
						|  | value_states.transpose(1, 2), | 
					
						
						|  | attn_mask=attention_bias, | 
					
						
						|  | dropout_p=self.dropout.p if self.training else 0.0, | 
					
						
						|  | ) | 
					
						
						|  | attn_output = attn_output.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | return attn_output, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NEW_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": NewAttention, | 
					
						
						|  |  | 
					
						
						|  | "sdpa": NewSdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewGatedMLP(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | GLU Variants Improve Transformer. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: NewConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | if config.hidden_dropout_prob > 0: | 
					
						
						|  | self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  | else: | 
					
						
						|  | self.hidden_dropout = None | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | up_gate = self.up_gate_proj(hidden_states) | 
					
						
						|  | up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1) | 
					
						
						|  | gate = self.act_fn(gate) | 
					
						
						|  | gated_states = gate * up_states | 
					
						
						|  | if self.hidden_dropout is not None: | 
					
						
						|  | gated_states = self.hidden_dropout(gated_states) | 
					
						
						|  | down_states = self.down_proj(gated_states) | 
					
						
						|  | return down_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewLayer(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: NewConfig, | 
					
						
						|  | pack_qkv=None, | 
					
						
						|  | use_memory_efficient_attention=None, | 
					
						
						|  | attn_implementation=None | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | if attn_implementation is None: | 
					
						
						|  | attn_implementation = config._attn_implementation | 
					
						
						|  | if use_memory_efficient_attention is None: | 
					
						
						|  | use_memory_efficient_attention = config.use_memory_efficient_attention | 
					
						
						|  | if use_memory_efficient_attention: | 
					
						
						|  | if attn_implementation != 'eager': | 
					
						
						|  | logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}") | 
					
						
						|  | attn_implementation = 'eager' | 
					
						
						|  | self.attention = NEW_ATTENTION_CLASSES[attn_implementation]( | 
					
						
						|  | config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention | 
					
						
						|  | ) | 
					
						
						|  | self.mlp = NewGatedMLP(config) | 
					
						
						|  |  | 
					
						
						|  | ln_class = LAYER_NORM[config.layer_norm_type] | 
					
						
						|  | self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | if config.hidden_dropout_prob > 0: | 
					
						
						|  | self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  | else: | 
					
						
						|  | self.hidden_dropout = None | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_bias: torch.FloatTensor, | 
					
						
						|  | rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, | 
					
						
						|  | padding_inputs: Optional[Tuple] = None, | 
					
						
						|  | attention_scale: Optional[torch.FloatTensor] = None, | 
					
						
						|  | subset_indices: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | qkv_inputs: Optional[Tuple] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, ...]: | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states if qkv_inputs is None else qkv_inputs[0] | 
					
						
						|  | attention_outputs = self.attention( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_bias, | 
					
						
						|  | rope_embeds, | 
					
						
						|  | padding_inputs, | 
					
						
						|  | attention_scale, | 
					
						
						|  | head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | qkv_inputs=qkv_inputs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = attention_outputs[0] | 
					
						
						|  | if self.hidden_dropout is not None: | 
					
						
						|  | hidden_states = self.hidden_dropout(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if subset_indices is not None: | 
					
						
						|  | hidden_states = hidden_states[subset_indices] | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.attn_ln(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | if self.hidden_dropout is not None: | 
					
						
						|  | hidden_states = self.hidden_dropout(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | hidden_states = self.mlp_ln(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) + attention_outputs[1:] | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewEncoder(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)]) | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_bias: Optional[torch.FloatTensor] = None, | 
					
						
						|  | rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, | 
					
						
						|  | padding_inputs: Optional[Tuple] = None, | 
					
						
						|  | attention_scale: Optional[torch.FloatTensor] = None, | 
					
						
						|  | subset_indices: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | output_hidden_states: Optional[bool] = False, | 
					
						
						|  | return_dict: Optional[bool] = True, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attentions = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  | for i, layer_module in enumerate(self.layer): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if i >= len(self.layer) - 1: | 
					
						
						|  | layer_subset_indices = subset_indices | 
					
						
						|  | else: | 
					
						
						|  | layer_subset_indices = None | 
					
						
						|  |  | 
					
						
						|  | layer_head_mask = head_mask[i] if head_mask is not None else None | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | layer_module.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_bias, | 
					
						
						|  | rope_embeds, | 
					
						
						|  | padding_inputs, | 
					
						
						|  | attention_scale, | 
					
						
						|  | layer_subset_indices, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = layer_module( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_bias, | 
					
						
						|  | rope_embeds, | 
					
						
						|  | padding_inputs, | 
					
						
						|  | attention_scale, | 
					
						
						|  | layer_subset_indices, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attentions = all_self_attentions + (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [ | 
					
						
						|  | hidden_states, | 
					
						
						|  | all_hidden_states, | 
					
						
						|  | all_self_attentions, | 
					
						
						|  | ] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutput( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewPooler(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.activation = nn.Tanh() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | first_token_tensor = hidden_states[:, 0] | 
					
						
						|  | pooled_output = self.dense(first_token_tensor) | 
					
						
						|  | pooled_output = self.activation(pooled_output) | 
					
						
						|  | return pooled_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = NewConfig | 
					
						
						|  | base_model_prefix = "new" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights""" | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  | elif isinstance(module, nn.LayerNorm): | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | module.weight.data.fill_(1.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewModel(NewPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | The bare New Model transformer outputting raw hidden-states without any specific head on top. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: NewConfig, add_pooling_layer=False): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = NewEmbeddings(config) | 
					
						
						|  | self.encoder = NewEncoder(config) | 
					
						
						|  |  | 
					
						
						|  | self.pooler = NewPooler(config) if add_pooling_layer else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embeddings.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | length: Optional[List[int]] = None, | 
					
						
						|  | subset_indices: Optional[torch.LongTensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | unpad_inputs: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: | 
					
						
						|  | r""" | 
					
						
						|  | length  (`list` of length `batch_size`, *optional*): | 
					
						
						|  | If is `None`, return padded `last_hidden_state`. | 
					
						
						|  | subset_indices  (): | 
					
						
						|  | pass | 
					
						
						|  | unpad_inputs  (`bool`, *optional*): | 
					
						
						|  | pass | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs | 
					
						
						|  | output_padded = length is None | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | (embedding_output, attention_mask, rope_embeds, length) = self.embeddings( | 
					
						
						|  | unpad_inputs, | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | length=length, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | inputs_embeds=inputs_embeds | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  | if unpad_inputs and self.config.use_memory_efficient_attention: | 
					
						
						|  | attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_bias = self.get_extended_attention_mask(attention_mask, input_shape) | 
					
						
						|  | if self.config.use_memory_efficient_attention: | 
					
						
						|  |  | 
					
						
						|  | attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1) | 
					
						
						|  |  | 
					
						
						|  | padding_inputs = None | 
					
						
						|  | if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention): | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | if not self.config.use_memory_efficient_attention: | 
					
						
						|  | padding_inputs = (indices, *input_shape) | 
					
						
						|  |  | 
					
						
						|  | attention_scale = None | 
					
						
						|  | if self.config.logn_attention_scale: | 
					
						
						|  | logger.warning_once("TODO: logn_attention_scale") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | embedding_output, | 
					
						
						|  | attention_bias=attention_bias, | 
					
						
						|  | rope_embeds=rope_embeds, | 
					
						
						|  | padding_inputs=padding_inputs, | 
					
						
						|  | attention_scale=attention_scale, | 
					
						
						|  | subset_indices=subset_indices, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = encoder_outputs[0] | 
					
						
						|  | if unpad_inputs and output_padded: | 
					
						
						|  | sequence_output = pad_input( | 
					
						
						|  | sequence_output.squeeze(), indices, batch_size, seq_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (sequence_output, pooled_output) + encoder_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPooling( | 
					
						
						|  | last_hidden_state=sequence_output, | 
					
						
						|  | pooler_output=pooled_output, | 
					
						
						|  | hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewLMPredictionHead(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.hidden_size, config.hidden_size) | 
					
						
						|  | self.transform_act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.decoder = nn.Linear(config.hidden_size, config.vocab_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = self.transform_act_fn(hidden_states) | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  | hidden_states = self.decoder(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewForMaskedLM(NewPreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: NewConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.new = NewModel(config, add_pooling_layer=False) | 
					
						
						|  | self.lm_head = NewLMPredictionHead(config) | 
					
						
						|  | self.loss_fct = nn.CrossEntropyLoss() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head.decoder | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head.decoder = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | unpad_inputs: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | 
					
						
						|  | config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | 
					
						
						|  | loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if labels is None or not self.new.config.unpad_inputs: | 
					
						
						|  | length = None | 
					
						
						|  | subset_indices = None | 
					
						
						|  | else: | 
					
						
						|  | length = attention_mask.sum(-1).tolist() | 
					
						
						|  | labels = labels[attention_mask.bool()].unsqueeze(0) | 
					
						
						|  | subset_indices = labels > -100 | 
					
						
						|  |  | 
					
						
						|  | outputs = self.new( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | length=length, | 
					
						
						|  | subset_indices=subset_indices, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | unpad_inputs=unpad_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  | prediction_scores = self.lm_head(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | masked_lm_loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if subset_indices is None: | 
					
						
						|  | mask = attention_mask.bool() | 
					
						
						|  | prediction_scores = prediction_scores[mask] | 
					
						
						|  | labels = labels[mask] | 
					
						
						|  | else: | 
					
						
						|  | labels = labels[subset_indices] | 
					
						
						|  | masked_lm_loss = self.loss_fct(prediction_scores, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (prediction_scores,) + outputs[2:] | 
					
						
						|  | return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MaskedLMOutput( | 
					
						
						|  | loss=masked_lm_loss, | 
					
						
						|  | logits=prediction_scores, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewForSequenceClassification(NewPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | self.new = NewModel(config, add_pooling_layer=True) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | unpad_inputs: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.new( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | unpad_inputs=unpad_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pooled_output = outputs[1] | 
					
						
						|  |  | 
					
						
						|  | pooled_output = self.dropout(pooled_output) | 
					
						
						|  | logits = self.classifier(pooled_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = nn.MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = nn.CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = nn.BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(logits, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewForMultipleChoice(NewPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.new = NewModel(config, add_pooling_layer=True) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | unpad_inputs: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | 
					
						
						|  | num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | 
					
						
						|  | `input_ids` above) | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | 
					
						
						|  | attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | 
					
						
						|  | token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | 
					
						
						|  | position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | 
					
						
						|  | inputs_embeds = ( | 
					
						
						|  | inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | 
					
						
						|  | if inputs_embeds is not None | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.new( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | unpad_inputs=unpad_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pooled_output = outputs[1] | 
					
						
						|  |  | 
					
						
						|  | pooled_output = self.dropout(pooled_output) | 
					
						
						|  | logits = self.classifier(pooled_output) | 
					
						
						|  | reshaped_logits = logits.view(-1, num_choices) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = nn.CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(reshaped_logits, labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (reshaped_logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return MultipleChoiceModelOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=reshaped_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class NewTokenClassifierOutput(ModelOutput): | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: torch.FloatTensor = None | 
					
						
						|  | last_hidden_state: torch.FloatTensor = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewForTokenClassification(NewPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.new = NewModel(config, add_pooling_layer=False) | 
					
						
						|  | classifier_dropout = ( | 
					
						
						|  | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | 
					
						
						|  | ) | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | unpad_inputs: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.new( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | unpad_inputs=unpad_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | sequence_output = self.dropout(sequence_output) | 
					
						
						|  | logits = self.classifier(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = nn.CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return NewTokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | last_hidden_state=sequence_output, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NewForQuestionAnswering(NewPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.new = NewModel(config, add_pooling_layer=False) | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | token_type_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | start_positions: Optional[torch.Tensor] = None, | 
					
						
						|  | end_positions: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | unpad_inputs: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.new( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | unpad_inputs=unpad_inputs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.qa_outputs(sequence_output) | 
					
						
						|  | start_logits, end_logits = logits.split(1, dim=-1) | 
					
						
						|  | start_logits = start_logits.squeeze(-1).contiguous() | 
					
						
						|  | end_logits = end_logits.squeeze(-1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(start_positions.size()) > 1: | 
					
						
						|  | start_positions = start_positions.squeeze(-1) | 
					
						
						|  | if len(end_positions.size()) > 1: | 
					
						
						|  | end_positions = end_positions.squeeze(-1) | 
					
						
						|  |  | 
					
						
						|  | ignored_index = start_logits.size(1) | 
					
						
						|  | start_positions = start_positions.clamp(0, ignored_index) | 
					
						
						|  | end_positions = end_positions.clamp(0, ignored_index) | 
					
						
						|  |  | 
					
						
						|  | loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) | 
					
						
						|  | start_loss = loss_fct(start_logits, start_positions) | 
					
						
						|  | end_loss = loss_fct(end_logits, end_positions) | 
					
						
						|  | total_loss = (start_loss + end_loss) / 2 | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (start_logits, end_logits) + outputs[2:] | 
					
						
						|  | return ((total_loss,) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return QuestionAnsweringModelOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | start_logits=start_logits, | 
					
						
						|  | end_logits=end_logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |