tmnam20 commited on
Commit
26770c7
1 Parent(s): 837a397

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: xlm-roberta-large
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ model-index:
14
+ - name: xlm-roberta-large-qqp-100
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: tmnam20/VieGLUE/QQP
21
+ type: tmnam20/VieGLUE
22
+ config: qqp
23
+ split: validation
24
+ args: qqp
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.6318327974276527
29
+ - name: F1
30
+ type: f1
31
+ value: 0.0
32
+ ---
33
+
34
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
35
+ should probably proofread and complete it, then remove this comment. -->
36
+
37
+ # xlm-roberta-large-qqp-100
38
+
39
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the tmnam20/VieGLUE/QQP dataset.
40
+ It achieves the following results on the evaluation set:
41
+ - Loss: 0.6726
42
+ - Accuracy: 0.6318
43
+ - F1: 0.0
44
+ - Combined Score: 0.3159
45
+
46
+ ## Model description
47
+
48
+ More information needed
49
+
50
+ ## Intended uses & limitations
51
+
52
+ More information needed
53
+
54
+ ## Training and evaluation data
55
+
56
+ More information needed
57
+
58
+ ## Training procedure
59
+
60
+ ### Training hyperparameters
61
+
62
+ The following hyperparameters were used during training:
63
+ - learning_rate: 2e-05
64
+ - train_batch_size: 32
65
+ - eval_batch_size: 16
66
+ - seed: 100
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - num_epochs: 3.0
70
+
71
+ ### Training results
72
+
73
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
74
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:--------------:|
75
+ | 0.6588 | 0.88 | 10000 | 0.6582 | 0.6318 | 0.0 | 0.3159 |
76
+ | 0.6572 | 1.76 | 20000 | 0.6583 | 0.6318 | 0.0 | 0.3159 |
77
+ | 0.6578 | 2.64 | 30000 | 0.6771 | 0.6318 | 0.0 | 0.3159 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.36.0
83
+ - Pytorch 2.1.0+cu121
84
+ - Datasets 2.15.0
85
+ - Tokenizers 0.15.0