tmnam20 commited on
Commit
67ac701
1 Parent(s): fd37653

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: xlm-roberta-large
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: xlm-roberta-large-mnli-10
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tmnam20/VieGLUE/MNLI
20
+ type: tmnam20/VieGLUE
21
+ config: mnli
22
+ split: validation_matched
23
+ args: mnli
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.3522172497965826
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # xlm-roberta-large-mnli-10
34
+
35
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the tmnam20/VieGLUE/MNLI dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 1.0985
38
+ - Accuracy: 0.3522
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 10
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
69
+ | 1.1009 | 0.81 | 10000 | 1.1015 | 0.3182 |
70
+ | 1.1042 | 1.63 | 20000 | 1.0998 | 0.3182 |
71
+ | 1.1034 | 2.44 | 30000 | 1.0985 | 0.3545 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.36.0
77
+ - Pytorch 2.1.0+cu121
78
+ - Datasets 2.15.0
79
+ - Tokenizers 0.15.0