tkoterwas commited on
Commit
2ceb9ae
1 Parent(s): 12a533c

lunar lander from drl course

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.71 +/- 21.95
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f56f4d2bd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f56f4d2bdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f56f4d2be50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f56f4d2bee0>", "_build": "<function ActorCriticPolicy._build at 0x7f56f4d2bf70>", "forward": "<function ActorCriticPolicy.forward at 0x7f56f4d2f040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f56f4d2f0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f56f4d2f160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f56f4d2f1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f56f4d2f280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f56f4d2f310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f56f4d2f3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f56f4d2d1b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677430687482687369, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaqej17+Ia85mu3PV1hl72I9LS98EXPvgAAgD8AAIA/eo0fvh0o7z662lQ+tPqfvuHYkDyNDaQ9AAAAAAAAAAC67ES+gVAbP0IxLD4kwrG+V49Uvbixfz0AAAAAAAAAABrfkL320Cy6NpfauoC7GrbnZSc7mCT8OQAAAAAAAIA/moVevK4jkLpvfjuzCYQRsBzXFTvwG8kzAACAPwAAgD+z6Re9wUVWP0hyvr3D+L2+OgLNvKHrHL0AAAAAAAAAAA2k7T3CHbo+xNeevnPIgL6sGQq8LA+uvQAAAAAAAAAA5iFCPTYqpT+vtx4+DmDFvkiu+j1ElcU9AAAAAAAAAABtqlo+s2khP37LXL4rJZa+iHMlPBjDJL0AAAAAAAAAALMQXD7HQcw+EkmCvuk8dr7/qXc976Y5vgAAAAAAAAAAbVkAvgjv/j5hwAA+j8CTvvt12rwaTSg9AAAAAAAAAACAqTS9hdvDuQ+/MLgVk6Qyrfoau8pCUDcAAIA/AACAP6Yr3b3U8KY+ZbYgPlwhc74TNNI6RIMXPgAAAAAAAAAAzWAqPE/VVrxc3QY84SuvPDJTvz2xg429AACAPwAAgD8tj10+DXQtP506U75/BKG+z7ZsPdZR8r0AAAAAAAAAAIDkCj2kKjK7x/ozunHrizxj4W88Fl1xvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGF5J8lyXckCUhpRSlIwBbJRNNgGMAXSUR0CW9kFaSs8xdX2UKGgGaAloD0MIchb2tMPscUCUhpRSlGgVTSsBaBZHQJb3F3os7Mh1fZQoaAZoCWgPQwjbozfchy1wQJSGlFKUaBVNEwFoFkdAlvcjfixVyXV9lChoBmgJaA9DCJP+XgoPgHFAlIaUUpRoFU0oAWgWR0CW9zREF4cFdX2UKGgGaAloD0MIqI5VSs+DbECUhpRSlGgVTQoBaBZHQJb3zh0hePd1fZQoaAZoCWgPQwiYvWw77WxuQJSGlFKUaBVNEQFoFkdAlvg1hgE2YXV9lChoBmgJaA9DCPxVgO92JHJAlIaUUpRoFU0rAWgWR0CW+DFtsN2DdX2UKGgGaAloD0MICTiEKrWGcUCUhpRSlGgVTS4BaBZHQJb6cYyfthN1fZQoaAZoCWgPQwhPBdzzvJdwQJSGlFKUaBVNAAFoFkdAlvrO2qkuYnV9lChoBmgJaA9DCOgTeZI0F3JAlIaUUpRoFU0cAWgWR0CW+ueO4oZydX2UKGgGaAloD0MIZK4Mqk1ScUCUhpRSlGgVTSABaBZHQJb7jYao/A11fZQoaAZoCWgPQwjHEAAc++JvQJSGlFKUaBVNjAFoFkdAlvwyeyzHCHV9lChoBmgJaA9DCAYQPpSoNnFAlIaUUpRoFU0mAWgWR0CW/JtT1kDqdX2UKGgGaAloD0MIylNW0/WlcECUhpRSlGgVTSQBaBZHQJb9kPQOWjZ1fZQoaAZoCWgPQwgqHaz/M85yQJSGlFKUaBVNAQFoFkdAlv5Ml5WzW3V9lChoBmgJaA9DCL2KjA7Il3FAlIaUUpRoFU1CAWgWR0CW/odELH+7dX2UKGgGaAloD0MIrJFdaVlNcECUhpRSlGgVS+9oFkdAlv6ndKujh3V9lChoBmgJaA9DCDemJywx3XFAlIaUUpRoFU0tAWgWR0CXAJYvFm4BdX2UKGgGaAloD0MIAqCKG3eScUCUhpRSlGgVTRQBaBZHQJcA/4DcM3J1fZQoaAZoCWgPQwgsuvWaHhtuQJSGlFKUaBVNLQFoFkdAlwFjy4FzMnV9lChoBmgJaA9DCKIJFLEIO21AlIaUUpRoFU0jAWgWR0CXAYPWxyGSdX2UKGgGaAloD0MIZeQs7KmjcUCUhpRSlGgVTaoBaBZHQJcB8YR/ViF1fZQoaAZoCWgPQwhQOLu1jAhyQJSGlFKUaBVNaAFoFkdAlwKHc580DXV9lChoBmgJaA9DCGTnbWx2129AlIaUUpRoFU0IAWgWR0CXAzpCrtE5dX2UKGgGaAloD0MI8z6O5sj4bUCUhpRSlGgVTREBaBZHQJcDmSKWLP51fZQoaAZoCWgPQwi63GCoQxZyQJSGlFKUaBVNBwFoFkdAlwR+7QLNOnV9lChoBmgJaA9DCB6jPPMy93BAlIaUUpRoFU0pAWgWR0CXBQfhMrVfdX2UKGgGaAloD0MIFVPpJ5zqckCUhpRSlGgVTVIBaBZHQJcFRBiTdLx1fZQoaAZoCWgPQwg9u3zrQ1JuQJSGlFKUaBVNAQFoFkdAlwaHTI/7i3V9lChoBmgJaA9DCG+cFOa90XBAlIaUUpRoFU1OAWgWR0CXB0e0Xxe+dX2UKGgGaAloD0MIdEF9yxwScUCUhpRSlGgVTWwBaBZHQJcJcuJ1q351fZQoaAZoCWgPQwiKPh9lxJNHQJSGlFKUaBVL6GgWR0CXCYj5sTFmdX2UKGgGaAloD0MI1EfgD/99c0CUhpRSlGgVTRsBaBZHQJcJ+rIYFaB1fZQoaAZoCWgPQwg/bypSYQduQJSGlFKUaBVNaQFoFkdAlwqMoH9m6HV9lChoBmgJaA9DCMtL/ie/dHJAlIaUUpRoFU0gAWgWR0CXCwA3T/hmdX2UKGgGaAloD0MI0TsVcI9hcUCUhpRSlGgVTTMBaBZHQJcLQ1zhgmZ1fZQoaAZoCWgPQwgQPSmTWstwQJSGlFKUaBVNegFoFkdAlwtJJPIn0HV9lChoBmgJaA9DCMXL07nimnBAlIaUUpRoFU01AWgWR0CXC71ivxH5dX2UKGgGaAloD0MIZcVwdUBDcUCUhpRSlGgVTQoBaBZHQJcML6wdKdx1fZQoaAZoCWgPQwh1q+ekN9lyQJSGlFKUaBVNMQFoFkdAlwybeZXuE3V9lChoBmgJaA9DCLcJ98q8w3FAlIaUUpRoFUviaBZHQJcMz5uZThp1fZQoaAZoCWgPQwhcyY6NgClyQJSGlFKUaBVNLgFoFkdAlw15A6dUbXV9lChoBmgJaA9DCCe+2lHcynFAlIaUUpRoFU0WAWgWR0CXDZSEDhcadX2UKGgGaAloD0MICRnIs8tdcUCUhpRSlGgVTRUBaBZHQJcPTVkMCtB1fZQoaAZoCWgPQwivfQG9cC9DQJSGlFKUaBVLzWgWR0CXD6fgJkXldX2UKGgGaAloD0MIGArYDsZycECUhpRSlGgVTRgBaBZHQJcQHAM2FWZ1fZQoaAZoCWgPQwg3GVWG8WNyQJSGlFKUaBVNaQFoFkdAlxB24ZuQ63V9lChoBmgJaA9DCFK13QRffW5AlIaUUpRoFU0RAWgWR0CXKjAuIyj6dX2UKGgGaAloD0MIhPOpY1VWcUCUhpRSlGgVS/doFkdAlyuLW3BpH3V9lChoBmgJaA9DCK67eaoDSXFAlIaUUpRoFU0bAWgWR0CXK/UzsQd0dX2UKGgGaAloD0MIAfkSKrgVcECUhpRSlGgVTRUBaBZHQJcsCNkvsZ51fZQoaAZoCWgPQwjImSZsP7FxQJSGlFKUaBVNOgFoFkdAlyyZG4I8hnV9lChoBmgJaA9DCFN7EW3H3XBAlIaUUpRoFU0AAWgWR0CXLO0Nz8xcdX2UKGgGaAloD0MI0uC2tnCackCUhpRSlGgVTTEBaBZHQJctAk6cRUZ1fZQoaAZoCWgPQwjAywwb5WNwQJSGlFKUaBVNMAFoFkdAly4Gbb1yvXV9lChoBmgJaA9DCGE3bFuUeG9AlIaUUpRoFU0iAWgWR0CXLk77Kq4pdX2UKGgGaAloD0MIgNJQo5DpcUCUhpRSlGgVTR0BaBZHQJcu9hb4agp1fZQoaAZoCWgPQwiHp1fKsg5tQJSGlFKUaBVNGwFoFkdAly8HQY1pCnV9lChoBmgJaA9DCKBTkJ+NXm1AlIaUUpRoFUv8aBZHQJcv7PyCnP51fZQoaAZoCWgPQwjCvTJv1UlwQJSGlFKUaBVNAwFoFkdAlzCBmGucMHV9lChoBmgJaA9DCOxQTUkW5XBAlIaUUpRoFU0mAWgWR0CXMhyu6mO3dX2UKGgGaAloD0MIzVmfcsy/bECUhpRSlGgVS/RoFkdAlzQ5wS8J2XV9lChoBmgJaA9DCK8GKA018GxAlIaUUpRoFUv+aBZHQJc13r4WUKR1fZQoaAZoCWgPQwj2JLA5RwNxQJSGlFKUaBVNTAFoFkdAlzX5UgjhUHV9lChoBmgJaA9DCOZY3lUPPnJAlIaUUpRoFU0oAWgWR0CXNgRKHwgDdX2UKGgGaAloD0MI+l5DcFwMQkCUhpRSlGgVS9FoFkdAlzaC0rsjV3V9lChoBmgJaA9DCP34S4v6HHFAlIaUUpRoFU0CAWgWR0CXNz3aSLZSdX2UKGgGaAloD0MIoBfuXBjsb0CUhpRSlGgVTbkBaBZHQJc4VxuKoAJ1fZQoaAZoCWgPQwj9SXzuhIltQJSGlFKUaBVNHQFoFkdAlziOR9w3pHV9lChoBmgJaA9DCCo5J/aQRXFAlIaUUpRoFU1TAWgWR0CXOKf9P1tgdX2UKGgGaAloD0MIeLZHb3irckCUhpRSlGgVTQMBaBZHQJc5aobXHzZ1fZQoaAZoCWgPQwh88rBQa/JwQJSGlFKUaBVNOgFoFkdAlzowmE4//3V9lChoBmgJaA9DCAq9/iR+IHJAlIaUUpRoFU2CAWgWR0CXOocd5prUdX2UKGgGaAloD0MImYHK+PdbbUCUhpRSlGgVTRcBaBZHQJc6m01IiC91fZQoaAZoCWgPQwigwabOI61wQJSGlFKUaBVL+WgWR0CXPOl2vB8AdX2UKGgGaAloD0MI48EWu70acECUhpRSlGgVTWABaBZHQJc+ls3yZrp1fZQoaAZoCWgPQwi46jpU06hwQJSGlFKUaBVNEAFoFkdAlz85fdAPd3V9lChoBmgJaA9DCI7MI38wqW9AlIaUUpRoFU0EAWgWR0CXP01cMVk+dX2UKGgGaAloD0MIAWvVrkkCcUCUhpRSlGgVTRoBaBZHQJc/jAh0Qsh1fZQoaAZoCWgPQwjmPc40IVtyQJSGlFKUaBVNcQNoFkdAlz+4HcDbJ3V9lChoBmgJaA9DCASuK2bEPHFAlIaUUpRoFU0DAWgWR0CXP/Dxsl9jdX2UKGgGaAloD0MISyL7IAtVckCUhpRSlGgVS+VoFkdAlz/wpSaVlnV9lChoBmgJaA9DCLNF0m70k1FAlIaUUpRoFUvQaBZHQJdAQgOjIq91fZQoaAZoCWgPQwhYrrfN1BJxQJSGlFKUaBVNUQFoFkdAl0EUZm7J4nV9lChoBmgJaA9DCD3X9+Eg4W5AlIaUUpRoFU0pAWgWR0CXQgSOR1YAdX2UKGgGaAloD0MI8Il1qrxCckCUhpRSlGgVTVIBaBZHQJdDUIE8q4J1fZQoaAZoCWgPQwir6A/NPOltQJSGlFKUaBVNGQFoFkdAl0Ni5/b0v3V9lChoBmgJaA9DCJ0Te2hf4HBAlIaUUpRoFU0sAWgWR0CXRAo0ygwodX2UKGgGaAloD0MIX16AffTJcECUhpRSlGgVTU8BaBZHQJdEtHy3CsR1fZQoaAZoCWgPQwhK7xtf+6FxQJSGlFKUaBVNDQFoFkdAl0WAl4TsY3V9lChoBmgJaA9DCMsPXOWJK3FAlIaUUpRoFUv3aBZHQJdG9t3wCr91fZQoaAZoCWgPQwhinpW0IotxQJSGlFKUaBVL9WgWR0CXR1G8mKIjdX2UKGgGaAloD0MI8BmJ0MhRckCUhpRSlGgVTRwBaBZHQJdHr101ZT11fZQoaAZoCWgPQwgdyeU/pAdUQJSGlFKUaBVL02gWR0CXR9aC+UQkdX2UKGgGaAloD0MIPiR87++7b0CUhpRSlGgVTQ4BaBZHQJdICKWLP2R1fZQoaAZoCWgPQwggRgiPtt1xQJSGlFKUaBVL+mgWR0CXSCSA6MisdX2UKGgGaAloD0MIea7vwwEncUCUhpRSlGgVTSEBaBZHQJdIXHmzSkV1fZQoaAZoCWgPQwjzOXe7Hu9wQJSGlFKUaBVNFgFoFkdAl0ihcE/0NHV9lChoBmgJaA9DCByWBn6UqXBAlIaUUpRoFU0vAWgWR0CXSVJtzjm0dX2UKGgGaAloD0MIesVTjzT6QUCUhpRSlGgVS8JoFkdAl0q80cfeUXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (216 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.71191711368294, "std_reward": 21.94881309483831, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T17:29:00.918570"}
tkLunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c12208734e02497dfc0586d95674e2030b4836f3c305b089696e056dc9f681a7
3
+ size 147404
tkLunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
tkLunarLander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f56f4d2bd30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f56f4d2bdc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f56f4d2be50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f56f4d2bee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f56f4d2bf70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f56f4d2f040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f56f4d2f0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f56f4d2f160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f56f4d2f1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f56f4d2f280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f56f4d2f310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f56f4d2f3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f56f4d2d1b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677430687482687369,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaqej17+Ia85mu3PV1hl72I9LS98EXPvgAAgD8AAIA/eo0fvh0o7z662lQ+tPqfvuHYkDyNDaQ9AAAAAAAAAAC67ES+gVAbP0IxLD4kwrG+V49Uvbixfz0AAAAAAAAAABrfkL320Cy6NpfauoC7GrbnZSc7mCT8OQAAAAAAAIA/moVevK4jkLpvfjuzCYQRsBzXFTvwG8kzAACAPwAAgD+z6Re9wUVWP0hyvr3D+L2+OgLNvKHrHL0AAAAAAAAAAA2k7T3CHbo+xNeevnPIgL6sGQq8LA+uvQAAAAAAAAAA5iFCPTYqpT+vtx4+DmDFvkiu+j1ElcU9AAAAAAAAAABtqlo+s2khP37LXL4rJZa+iHMlPBjDJL0AAAAAAAAAALMQXD7HQcw+EkmCvuk8dr7/qXc976Y5vgAAAAAAAAAAbVkAvgjv/j5hwAA+j8CTvvt12rwaTSg9AAAAAAAAAACAqTS9hdvDuQ+/MLgVk6Qyrfoau8pCUDcAAIA/AACAP6Yr3b3U8KY+ZbYgPlwhc74TNNI6RIMXPgAAAAAAAAAAzWAqPE/VVrxc3QY84SuvPDJTvz2xg429AACAPwAAgD8tj10+DXQtP506U75/BKG+z7ZsPdZR8r0AAAAAAAAAAIDkCj2kKjK7x/ozunHrizxj4W88Fl1xvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGF5J8lyXckCUhpRSlIwBbJRNNgGMAXSUR0CW9kFaSs8xdX2UKGgGaAloD0MIchb2tMPscUCUhpRSlGgVTSsBaBZHQJb3F3os7Mh1fZQoaAZoCWgPQwjbozfchy1wQJSGlFKUaBVNEwFoFkdAlvcjfixVyXV9lChoBmgJaA9DCJP+XgoPgHFAlIaUUpRoFU0oAWgWR0CW9zREF4cFdX2UKGgGaAloD0MIqI5VSs+DbECUhpRSlGgVTQoBaBZHQJb3zh0hePd1fZQoaAZoCWgPQwiYvWw77WxuQJSGlFKUaBVNEQFoFkdAlvg1hgE2YXV9lChoBmgJaA9DCPxVgO92JHJAlIaUUpRoFU0rAWgWR0CW+DFtsN2DdX2UKGgGaAloD0MICTiEKrWGcUCUhpRSlGgVTS4BaBZHQJb6cYyfthN1fZQoaAZoCWgPQwhPBdzzvJdwQJSGlFKUaBVNAAFoFkdAlvrO2qkuYnV9lChoBmgJaA9DCOgTeZI0F3JAlIaUUpRoFU0cAWgWR0CW+ueO4oZydX2UKGgGaAloD0MIZK4Mqk1ScUCUhpRSlGgVTSABaBZHQJb7jYao/A11fZQoaAZoCWgPQwjHEAAc++JvQJSGlFKUaBVNjAFoFkdAlvwyeyzHCHV9lChoBmgJaA9DCAYQPpSoNnFAlIaUUpRoFU0mAWgWR0CW/JtT1kDqdX2UKGgGaAloD0MIylNW0/WlcECUhpRSlGgVTSQBaBZHQJb9kPQOWjZ1fZQoaAZoCWgPQwgqHaz/M85yQJSGlFKUaBVNAQFoFkdAlv5Ml5WzW3V9lChoBmgJaA9DCL2KjA7Il3FAlIaUUpRoFU1CAWgWR0CW/odELH+7dX2UKGgGaAloD0MIrJFdaVlNcECUhpRSlGgVS+9oFkdAlv6ndKujh3V9lChoBmgJaA9DCDemJywx3XFAlIaUUpRoFU0tAWgWR0CXAJYvFm4BdX2UKGgGaAloD0MIAqCKG3eScUCUhpRSlGgVTRQBaBZHQJcA/4DcM3J1fZQoaAZoCWgPQwgsuvWaHhtuQJSGlFKUaBVNLQFoFkdAlwFjy4FzMnV9lChoBmgJaA9DCKIJFLEIO21AlIaUUpRoFU0jAWgWR0CXAYPWxyGSdX2UKGgGaAloD0MIZeQs7KmjcUCUhpRSlGgVTaoBaBZHQJcB8YR/ViF1fZQoaAZoCWgPQwhQOLu1jAhyQJSGlFKUaBVNaAFoFkdAlwKHc580DXV9lChoBmgJaA9DCGTnbWx2129AlIaUUpRoFU0IAWgWR0CXAzpCrtE5dX2UKGgGaAloD0MI8z6O5sj4bUCUhpRSlGgVTREBaBZHQJcDmSKWLP51fZQoaAZoCWgPQwi63GCoQxZyQJSGlFKUaBVNBwFoFkdAlwR+7QLNOnV9lChoBmgJaA9DCB6jPPMy93BAlIaUUpRoFU0pAWgWR0CXBQfhMrVfdX2UKGgGaAloD0MIFVPpJ5zqckCUhpRSlGgVTVIBaBZHQJcFRBiTdLx1fZQoaAZoCWgPQwg9u3zrQ1JuQJSGlFKUaBVNAQFoFkdAlwaHTI/7i3V9lChoBmgJaA9DCG+cFOa90XBAlIaUUpRoFU1OAWgWR0CXB0e0Xxe+dX2UKGgGaAloD0MIdEF9yxwScUCUhpRSlGgVTWwBaBZHQJcJcuJ1q351fZQoaAZoCWgPQwiKPh9lxJNHQJSGlFKUaBVL6GgWR0CXCYj5sTFmdX2UKGgGaAloD0MI1EfgD/99c0CUhpRSlGgVTRsBaBZHQJcJ+rIYFaB1fZQoaAZoCWgPQwg/bypSYQduQJSGlFKUaBVNaQFoFkdAlwqMoH9m6HV9lChoBmgJaA9DCMtL/ie/dHJAlIaUUpRoFU0gAWgWR0CXCwA3T/hmdX2UKGgGaAloD0MI0TsVcI9hcUCUhpRSlGgVTTMBaBZHQJcLQ1zhgmZ1fZQoaAZoCWgPQwgQPSmTWstwQJSGlFKUaBVNegFoFkdAlwtJJPIn0HV9lChoBmgJaA9DCMXL07nimnBAlIaUUpRoFU01AWgWR0CXC71ivxH5dX2UKGgGaAloD0MIZcVwdUBDcUCUhpRSlGgVTQoBaBZHQJcML6wdKdx1fZQoaAZoCWgPQwh1q+ekN9lyQJSGlFKUaBVNMQFoFkdAlwybeZXuE3V9lChoBmgJaA9DCLcJ98q8w3FAlIaUUpRoFUviaBZHQJcMz5uZThp1fZQoaAZoCWgPQwhcyY6NgClyQJSGlFKUaBVNLgFoFkdAlw15A6dUbXV9lChoBmgJaA9DCCe+2lHcynFAlIaUUpRoFU0WAWgWR0CXDZSEDhcadX2UKGgGaAloD0MICRnIs8tdcUCUhpRSlGgVTRUBaBZHQJcPTVkMCtB1fZQoaAZoCWgPQwivfQG9cC9DQJSGlFKUaBVLzWgWR0CXD6fgJkXldX2UKGgGaAloD0MIGArYDsZycECUhpRSlGgVTRgBaBZHQJcQHAM2FWZ1fZQoaAZoCWgPQwg3GVWG8WNyQJSGlFKUaBVNaQFoFkdAlxB24ZuQ63V9lChoBmgJaA9DCFK13QRffW5AlIaUUpRoFU0RAWgWR0CXKjAuIyj6dX2UKGgGaAloD0MIhPOpY1VWcUCUhpRSlGgVS/doFkdAlyuLW3BpH3V9lChoBmgJaA9DCK67eaoDSXFAlIaUUpRoFU0bAWgWR0CXK/UzsQd0dX2UKGgGaAloD0MIAfkSKrgVcECUhpRSlGgVTRUBaBZHQJcsCNkvsZ51fZQoaAZoCWgPQwjImSZsP7FxQJSGlFKUaBVNOgFoFkdAlyyZG4I8hnV9lChoBmgJaA9DCFN7EW3H3XBAlIaUUpRoFU0AAWgWR0CXLO0Nz8xcdX2UKGgGaAloD0MI0uC2tnCackCUhpRSlGgVTTEBaBZHQJctAk6cRUZ1fZQoaAZoCWgPQwjAywwb5WNwQJSGlFKUaBVNMAFoFkdAly4Gbb1yvXV9lChoBmgJaA9DCGE3bFuUeG9AlIaUUpRoFU0iAWgWR0CXLk77Kq4pdX2UKGgGaAloD0MIgNJQo5DpcUCUhpRSlGgVTR0BaBZHQJcu9hb4agp1fZQoaAZoCWgPQwiHp1fKsg5tQJSGlFKUaBVNGwFoFkdAly8HQY1pCnV9lChoBmgJaA9DCKBTkJ+NXm1AlIaUUpRoFUv8aBZHQJcv7PyCnP51fZQoaAZoCWgPQwjCvTJv1UlwQJSGlFKUaBVNAwFoFkdAlzCBmGucMHV9lChoBmgJaA9DCOxQTUkW5XBAlIaUUpRoFU0mAWgWR0CXMhyu6mO3dX2UKGgGaAloD0MIzVmfcsy/bECUhpRSlGgVS/RoFkdAlzQ5wS8J2XV9lChoBmgJaA9DCK8GKA018GxAlIaUUpRoFUv+aBZHQJc13r4WUKR1fZQoaAZoCWgPQwj2JLA5RwNxQJSGlFKUaBVNTAFoFkdAlzX5UgjhUHV9lChoBmgJaA9DCOZY3lUPPnJAlIaUUpRoFU0oAWgWR0CXNgRKHwgDdX2UKGgGaAloD0MI+l5DcFwMQkCUhpRSlGgVS9FoFkdAlzaC0rsjV3V9lChoBmgJaA9DCP34S4v6HHFAlIaUUpRoFU0CAWgWR0CXNz3aSLZSdX2UKGgGaAloD0MIoBfuXBjsb0CUhpRSlGgVTbkBaBZHQJc4VxuKoAJ1fZQoaAZoCWgPQwj9SXzuhIltQJSGlFKUaBVNHQFoFkdAlziOR9w3pHV9lChoBmgJaA9DCCo5J/aQRXFAlIaUUpRoFU1TAWgWR0CXOKf9P1tgdX2UKGgGaAloD0MIeLZHb3irckCUhpRSlGgVTQMBaBZHQJc5aobXHzZ1fZQoaAZoCWgPQwh88rBQa/JwQJSGlFKUaBVNOgFoFkdAlzowmE4//3V9lChoBmgJaA9DCAq9/iR+IHJAlIaUUpRoFU2CAWgWR0CXOocd5prUdX2UKGgGaAloD0MImYHK+PdbbUCUhpRSlGgVTRcBaBZHQJc6m01IiC91fZQoaAZoCWgPQwigwabOI61wQJSGlFKUaBVL+WgWR0CXPOl2vB8AdX2UKGgGaAloD0MI48EWu70acECUhpRSlGgVTWABaBZHQJc+ls3yZrp1fZQoaAZoCWgPQwi46jpU06hwQJSGlFKUaBVNEAFoFkdAlz85fdAPd3V9lChoBmgJaA9DCI7MI38wqW9AlIaUUpRoFU0EAWgWR0CXP01cMVk+dX2UKGgGaAloD0MIAWvVrkkCcUCUhpRSlGgVTRoBaBZHQJc/jAh0Qsh1fZQoaAZoCWgPQwjmPc40IVtyQJSGlFKUaBVNcQNoFkdAlz+4HcDbJ3V9lChoBmgJaA9DCASuK2bEPHFAlIaUUpRoFU0DAWgWR0CXP/Dxsl9jdX2UKGgGaAloD0MISyL7IAtVckCUhpRSlGgVS+VoFkdAlz/wpSaVlnV9lChoBmgJaA9DCLNF0m70k1FAlIaUUpRoFUvQaBZHQJdAQgOjIq91fZQoaAZoCWgPQwhYrrfN1BJxQJSGlFKUaBVNUQFoFkdAl0EUZm7J4nV9lChoBmgJaA9DCD3X9+Eg4W5AlIaUUpRoFU0pAWgWR0CXQgSOR1YAdX2UKGgGaAloD0MI8Il1qrxCckCUhpRSlGgVTVIBaBZHQJdDUIE8q4J1fZQoaAZoCWgPQwir6A/NPOltQJSGlFKUaBVNGQFoFkdAl0Ni5/b0v3V9lChoBmgJaA9DCJ0Te2hf4HBAlIaUUpRoFU0sAWgWR0CXRAo0ygwodX2UKGgGaAloD0MIX16AffTJcECUhpRSlGgVTU8BaBZHQJdEtHy3CsR1fZQoaAZoCWgPQwhK7xtf+6FxQJSGlFKUaBVNDQFoFkdAl0WAl4TsY3V9lChoBmgJaA9DCMsPXOWJK3FAlIaUUpRoFUv3aBZHQJdG9t3wCr91fZQoaAZoCWgPQwhinpW0IotxQJSGlFKUaBVL9WgWR0CXR1G8mKIjdX2UKGgGaAloD0MI8BmJ0MhRckCUhpRSlGgVTRwBaBZHQJdHr101ZT11fZQoaAZoCWgPQwgdyeU/pAdUQJSGlFKUaBVL02gWR0CXR9aC+UQkdX2UKGgGaAloD0MIPiR87++7b0CUhpRSlGgVTQ4BaBZHQJdICKWLP2R1fZQoaAZoCWgPQwggRgiPtt1xQJSGlFKUaBVL+mgWR0CXSCSA6MisdX2UKGgGaAloD0MIea7vwwEncUCUhpRSlGgVTSEBaBZHQJdIXHmzSkV1fZQoaAZoCWgPQwjzOXe7Hu9wQJSGlFKUaBVNFgFoFkdAl0ihcE/0NHV9lChoBmgJaA9DCByWBn6UqXBAlIaUUpRoFU0vAWgWR0CXSVJtzjm0dX2UKGgGaAloD0MIesVTjzT6QUCUhpRSlGgVS8JoFkdAl0q80cfeUXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
tkLunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e9b3cd18ffe4d6cc08817b6a298c6fd851366067843990343a2c5a9e357cdec
3
+ size 87929
tkLunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d64c20d635389561d20a60547578bb2350cd6968b012fc9b30c82822b6a3f9cb
3
+ size 43393
tkLunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
tkLunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0