lunar lander from drl course
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- tkLunarLander.zip +3 -0
- tkLunarLander/_stable_baselines3_version +1 -0
- tkLunarLander/data +95 -0
- tkLunarLander/policy.optimizer.pth +3 -0
- tkLunarLander/policy.pth +3 -0
- tkLunarLander/pytorch_variables.pth +3 -0
- tkLunarLander/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 273.71 +/- 21.95
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f56f4d2bd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f56f4d2bdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f56f4d2be50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f56f4d2bee0>", "_build": "<function ActorCriticPolicy._build at 0x7f56f4d2bf70>", "forward": "<function ActorCriticPolicy.forward at 0x7f56f4d2f040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f56f4d2f0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f56f4d2f160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f56f4d2f1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f56f4d2f280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f56f4d2f310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f56f4d2f3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f56f4d2d1b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677430687482687369, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaqej17+Ia85mu3PV1hl72I9LS98EXPvgAAgD8AAIA/eo0fvh0o7z662lQ+tPqfvuHYkDyNDaQ9AAAAAAAAAAC67ES+gVAbP0IxLD4kwrG+V49Uvbixfz0AAAAAAAAAABrfkL320Cy6NpfauoC7GrbnZSc7mCT8OQAAAAAAAIA/moVevK4jkLpvfjuzCYQRsBzXFTvwG8kzAACAPwAAgD+z6Re9wUVWP0hyvr3D+L2+OgLNvKHrHL0AAAAAAAAAAA2k7T3CHbo+xNeevnPIgL6sGQq8LA+uvQAAAAAAAAAA5iFCPTYqpT+vtx4+DmDFvkiu+j1ElcU9AAAAAAAAAABtqlo+s2khP37LXL4rJZa+iHMlPBjDJL0AAAAAAAAAALMQXD7HQcw+EkmCvuk8dr7/qXc976Y5vgAAAAAAAAAAbVkAvgjv/j5hwAA+j8CTvvt12rwaTSg9AAAAAAAAAACAqTS9hdvDuQ+/MLgVk6Qyrfoau8pCUDcAAIA/AACAP6Yr3b3U8KY+ZbYgPlwhc74TNNI6RIMXPgAAAAAAAAAAzWAqPE/VVrxc3QY84SuvPDJTvz2xg429AACAPwAAgD8tj10+DXQtP506U75/BKG+z7ZsPdZR8r0AAAAAAAAAAIDkCj2kKjK7x/ozunHrizxj4W88Fl1xvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGF5J8lyXckCUhpRSlIwBbJRNNgGMAXSUR0CW9kFaSs8xdX2UKGgGaAloD0MIchb2tMPscUCUhpRSlGgVTSsBaBZHQJb3F3os7Mh1fZQoaAZoCWgPQwjbozfchy1wQJSGlFKUaBVNEwFoFkdAlvcjfixVyXV9lChoBmgJaA9DCJP+XgoPgHFAlIaUUpRoFU0oAWgWR0CW9zREF4cFdX2UKGgGaAloD0MIqI5VSs+DbECUhpRSlGgVTQoBaBZHQJb3zh0hePd1fZQoaAZoCWgPQwiYvWw77WxuQJSGlFKUaBVNEQFoFkdAlvg1hgE2YXV9lChoBmgJaA9DCPxVgO92JHJAlIaUUpRoFU0rAWgWR0CW+DFtsN2DdX2UKGgGaAloD0MICTiEKrWGcUCUhpRSlGgVTS4BaBZHQJb6cYyfthN1fZQoaAZoCWgPQwhPBdzzvJdwQJSGlFKUaBVNAAFoFkdAlvrO2qkuYnV9lChoBmgJaA9DCOgTeZI0F3JAlIaUUpRoFU0cAWgWR0CW+ueO4oZydX2UKGgGaAloD0MIZK4Mqk1ScUCUhpRSlGgVTSABaBZHQJb7jYao/A11fZQoaAZoCWgPQwjHEAAc++JvQJSGlFKUaBVNjAFoFkdAlvwyeyzHCHV9lChoBmgJaA9DCAYQPpSoNnFAlIaUUpRoFU0mAWgWR0CW/JtT1kDqdX2UKGgGaAloD0MIylNW0/WlcECUhpRSlGgVTSQBaBZHQJb9kPQOWjZ1fZQoaAZoCWgPQwgqHaz/M85yQJSGlFKUaBVNAQFoFkdAlv5Ml5WzW3V9lChoBmgJaA9DCL2KjA7Il3FAlIaUUpRoFU1CAWgWR0CW/odELH+7dX2UKGgGaAloD0MIrJFdaVlNcECUhpRSlGgVS+9oFkdAlv6ndKujh3V9lChoBmgJaA9DCDemJywx3XFAlIaUUpRoFU0tAWgWR0CXAJYvFm4BdX2UKGgGaAloD0MIAqCKG3eScUCUhpRSlGgVTRQBaBZHQJcA/4DcM3J1fZQoaAZoCWgPQwgsuvWaHhtuQJSGlFKUaBVNLQFoFkdAlwFjy4FzMnV9lChoBmgJaA9DCKIJFLEIO21AlIaUUpRoFU0jAWgWR0CXAYPWxyGSdX2UKGgGaAloD0MIZeQs7KmjcUCUhpRSlGgVTaoBaBZHQJcB8YR/ViF1fZQoaAZoCWgPQwhQOLu1jAhyQJSGlFKUaBVNaAFoFkdAlwKHc580DXV9lChoBmgJaA9DCGTnbWx2129AlIaUUpRoFU0IAWgWR0CXAzpCrtE5dX2UKGgGaAloD0MI8z6O5sj4bUCUhpRSlGgVTREBaBZHQJcDmSKWLP51fZQoaAZoCWgPQwi63GCoQxZyQJSGlFKUaBVNBwFoFkdAlwR+7QLNOnV9lChoBmgJaA9DCB6jPPMy93BAlIaUUpRoFU0pAWgWR0CXBQfhMrVfdX2UKGgGaAloD0MIFVPpJ5zqckCUhpRSlGgVTVIBaBZHQJcFRBiTdLx1fZQoaAZoCWgPQwg9u3zrQ1JuQJSGlFKUaBVNAQFoFkdAlwaHTI/7i3V9lChoBmgJaA9DCG+cFOa90XBAlIaUUpRoFU1OAWgWR0CXB0e0Xxe+dX2UKGgGaAloD0MIdEF9yxwScUCUhpRSlGgVTWwBaBZHQJcJcuJ1q351fZQoaAZoCWgPQwiKPh9lxJNHQJSGlFKUaBVL6GgWR0CXCYj5sTFmdX2UKGgGaAloD0MI1EfgD/99c0CUhpRSlGgVTRsBaBZHQJcJ+rIYFaB1fZQoaAZoCWgPQwg/bypSYQduQJSGlFKUaBVNaQFoFkdAlwqMoH9m6HV9lChoBmgJaA9DCMtL/ie/dHJAlIaUUpRoFU0gAWgWR0CXCwA3T/hmdX2UKGgGaAloD0MI0TsVcI9hcUCUhpRSlGgVTTMBaBZHQJcLQ1zhgmZ1fZQoaAZoCWgPQwgQPSmTWstwQJSGlFKUaBVNegFoFkdAlwtJJPIn0HV9lChoBmgJaA9DCMXL07nimnBAlIaUUpRoFU01AWgWR0CXC71ivxH5dX2UKGgGaAloD0MIZcVwdUBDcUCUhpRSlGgVTQoBaBZHQJcML6wdKdx1fZQoaAZoCWgPQwh1q+ekN9lyQJSGlFKUaBVNMQFoFkdAlwybeZXuE3V9lChoBmgJaA9DCLcJ98q8w3FAlIaUUpRoFUviaBZHQJcMz5uZThp1fZQoaAZoCWgPQwhcyY6NgClyQJSGlFKUaBVNLgFoFkdAlw15A6dUbXV9lChoBmgJaA9DCCe+2lHcynFAlIaUUpRoFU0WAWgWR0CXDZSEDhcadX2UKGgGaAloD0MICRnIs8tdcUCUhpRSlGgVTRUBaBZHQJcPTVkMCtB1fZQoaAZoCWgPQwivfQG9cC9DQJSGlFKUaBVLzWgWR0CXD6fgJkXldX2UKGgGaAloD0MIGArYDsZycECUhpRSlGgVTRgBaBZHQJcQHAM2FWZ1fZQoaAZoCWgPQwg3GVWG8WNyQJSGlFKUaBVNaQFoFkdAlxB24ZuQ63V9lChoBmgJaA9DCFK13QRffW5AlIaUUpRoFU0RAWgWR0CXKjAuIyj6dX2UKGgGaAloD0MIhPOpY1VWcUCUhpRSlGgVS/doFkdAlyuLW3BpH3V9lChoBmgJaA9DCK67eaoDSXFAlIaUUpRoFU0bAWgWR0CXK/UzsQd0dX2UKGgGaAloD0MIAfkSKrgVcECUhpRSlGgVTRUBaBZHQJcsCNkvsZ51fZQoaAZoCWgPQwjImSZsP7FxQJSGlFKUaBVNOgFoFkdAlyyZG4I8hnV9lChoBmgJaA9DCFN7EW3H3XBAlIaUUpRoFU0AAWgWR0CXLO0Nz8xcdX2UKGgGaAloD0MI0uC2tnCackCUhpRSlGgVTTEBaBZHQJctAk6cRUZ1fZQoaAZoCWgPQwjAywwb5WNwQJSGlFKUaBVNMAFoFkdAly4Gbb1yvXV9lChoBmgJaA9DCGE3bFuUeG9AlIaUUpRoFU0iAWgWR0CXLk77Kq4pdX2UKGgGaAloD0MIgNJQo5DpcUCUhpRSlGgVTR0BaBZHQJcu9hb4agp1fZQoaAZoCWgPQwiHp1fKsg5tQJSGlFKUaBVNGwFoFkdAly8HQY1pCnV9lChoBmgJaA9DCKBTkJ+NXm1AlIaUUpRoFUv8aBZHQJcv7PyCnP51fZQoaAZoCWgPQwjCvTJv1UlwQJSGlFKUaBVNAwFoFkdAlzCBmGucMHV9lChoBmgJaA9DCOxQTUkW5XBAlIaUUpRoFU0mAWgWR0CXMhyu6mO3dX2UKGgGaAloD0MIzVmfcsy/bECUhpRSlGgVS/RoFkdAlzQ5wS8J2XV9lChoBmgJaA9DCK8GKA018GxAlIaUUpRoFUv+aBZHQJc13r4WUKR1fZQoaAZoCWgPQwj2JLA5RwNxQJSGlFKUaBVNTAFoFkdAlzX5UgjhUHV9lChoBmgJaA9DCOZY3lUPPnJAlIaUUpRoFU0oAWgWR0CXNgRKHwgDdX2UKGgGaAloD0MI+l5DcFwMQkCUhpRSlGgVS9FoFkdAlzaC0rsjV3V9lChoBmgJaA9DCP34S4v6HHFAlIaUUpRoFU0CAWgWR0CXNz3aSLZSdX2UKGgGaAloD0MIoBfuXBjsb0CUhpRSlGgVTbkBaBZHQJc4VxuKoAJ1fZQoaAZoCWgPQwj9SXzuhIltQJSGlFKUaBVNHQFoFkdAlziOR9w3pHV9lChoBmgJaA9DCCo5J/aQRXFAlIaUUpRoFU1TAWgWR0CXOKf9P1tgdX2UKGgGaAloD0MIeLZHb3irckCUhpRSlGgVTQMBaBZHQJc5aobXHzZ1fZQoaAZoCWgPQwh88rBQa/JwQJSGlFKUaBVNOgFoFkdAlzowmE4//3V9lChoBmgJaA9DCAq9/iR+IHJAlIaUUpRoFU2CAWgWR0CXOocd5prUdX2UKGgGaAloD0MImYHK+PdbbUCUhpRSlGgVTRcBaBZHQJc6m01IiC91fZQoaAZoCWgPQwigwabOI61wQJSGlFKUaBVL+WgWR0CXPOl2vB8AdX2UKGgGaAloD0MI48EWu70acECUhpRSlGgVTWABaBZHQJc+ls3yZrp1fZQoaAZoCWgPQwi46jpU06hwQJSGlFKUaBVNEAFoFkdAlz85fdAPd3V9lChoBmgJaA9DCI7MI38wqW9AlIaUUpRoFU0EAWgWR0CXP01cMVk+dX2UKGgGaAloD0MIAWvVrkkCcUCUhpRSlGgVTRoBaBZHQJc/jAh0Qsh1fZQoaAZoCWgPQwjmPc40IVtyQJSGlFKUaBVNcQNoFkdAlz+4HcDbJ3V9lChoBmgJaA9DCASuK2bEPHFAlIaUUpRoFU0DAWgWR0CXP/Dxsl9jdX2UKGgGaAloD0MISyL7IAtVckCUhpRSlGgVS+VoFkdAlz/wpSaVlnV9lChoBmgJaA9DCLNF0m70k1FAlIaUUpRoFUvQaBZHQJdAQgOjIq91fZQoaAZoCWgPQwhYrrfN1BJxQJSGlFKUaBVNUQFoFkdAl0EUZm7J4nV9lChoBmgJaA9DCD3X9+Eg4W5AlIaUUpRoFU0pAWgWR0CXQgSOR1YAdX2UKGgGaAloD0MI8Il1qrxCckCUhpRSlGgVTVIBaBZHQJdDUIE8q4J1fZQoaAZoCWgPQwir6A/NPOltQJSGlFKUaBVNGQFoFkdAl0Ni5/b0v3V9lChoBmgJaA9DCJ0Te2hf4HBAlIaUUpRoFU0sAWgWR0CXRAo0ygwodX2UKGgGaAloD0MIX16AffTJcECUhpRSlGgVTU8BaBZHQJdEtHy3CsR1fZQoaAZoCWgPQwhK7xtf+6FxQJSGlFKUaBVNDQFoFkdAl0WAl4TsY3V9lChoBmgJaA9DCMsPXOWJK3FAlIaUUpRoFUv3aBZHQJdG9t3wCr91fZQoaAZoCWgPQwhinpW0IotxQJSGlFKUaBVL9WgWR0CXR1G8mKIjdX2UKGgGaAloD0MI8BmJ0MhRckCUhpRSlGgVTRwBaBZHQJdHr101ZT11fZQoaAZoCWgPQwgdyeU/pAdUQJSGlFKUaBVL02gWR0CXR9aC+UQkdX2UKGgGaAloD0MIPiR87++7b0CUhpRSlGgVTQ4BaBZHQJdICKWLP2R1fZQoaAZoCWgPQwggRgiPtt1xQJSGlFKUaBVL+mgWR0CXSCSA6MisdX2UKGgGaAloD0MIea7vwwEncUCUhpRSlGgVTSEBaBZHQJdIXHmzSkV1fZQoaAZoCWgPQwjzOXe7Hu9wQJSGlFKUaBVNFgFoFkdAl0ihcE/0NHV9lChoBmgJaA9DCByWBn6UqXBAlIaUUpRoFU0vAWgWR0CXSVJtzjm0dX2UKGgGaAloD0MIesVTjzT6QUCUhpRSlGgVS8JoFkdAl0q80cfeUXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (216 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 273.71191711368294, "std_reward": 21.94881309483831, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T17:29:00.918570"}
|
tkLunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c12208734e02497dfc0586d95674e2030b4836f3c305b089696e056dc9f681a7
|
3 |
+
size 147404
|
tkLunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
tkLunarLander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f56f4d2bd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f56f4d2bdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f56f4d2be50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f56f4d2bee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f56f4d2bf70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f56f4d2f040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f56f4d2f0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f56f4d2f160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f56f4d2f1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f56f4d2f280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f56f4d2f310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f56f4d2f3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f56f4d2d1b0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677430687482687369,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaqej17+Ia85mu3PV1hl72I9LS98EXPvgAAgD8AAIA/eo0fvh0o7z662lQ+tPqfvuHYkDyNDaQ9AAAAAAAAAAC67ES+gVAbP0IxLD4kwrG+V49Uvbixfz0AAAAAAAAAABrfkL320Cy6NpfauoC7GrbnZSc7mCT8OQAAAAAAAIA/moVevK4jkLpvfjuzCYQRsBzXFTvwG8kzAACAPwAAgD+z6Re9wUVWP0hyvr3D+L2+OgLNvKHrHL0AAAAAAAAAAA2k7T3CHbo+xNeevnPIgL6sGQq8LA+uvQAAAAAAAAAA5iFCPTYqpT+vtx4+DmDFvkiu+j1ElcU9AAAAAAAAAABtqlo+s2khP37LXL4rJZa+iHMlPBjDJL0AAAAAAAAAALMQXD7HQcw+EkmCvuk8dr7/qXc976Y5vgAAAAAAAAAAbVkAvgjv/j5hwAA+j8CTvvt12rwaTSg9AAAAAAAAAACAqTS9hdvDuQ+/MLgVk6Qyrfoau8pCUDcAAIA/AACAP6Yr3b3U8KY+ZbYgPlwhc74TNNI6RIMXPgAAAAAAAAAAzWAqPE/VVrxc3QY84SuvPDJTvz2xg429AACAPwAAgD8tj10+DXQtP506U75/BKG+z7ZsPdZR8r0AAAAAAAAAAIDkCj2kKjK7x/ozunHrizxj4W88Fl1xvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGF5J8lyXckCUhpRSlIwBbJRNNgGMAXSUR0CW9kFaSs8xdX2UKGgGaAloD0MIchb2tMPscUCUhpRSlGgVTSsBaBZHQJb3F3os7Mh1fZQoaAZoCWgPQwjbozfchy1wQJSGlFKUaBVNEwFoFkdAlvcjfixVyXV9lChoBmgJaA9DCJP+XgoPgHFAlIaUUpRoFU0oAWgWR0CW9zREF4cFdX2UKGgGaAloD0MIqI5VSs+DbECUhpRSlGgVTQoBaBZHQJb3zh0hePd1fZQoaAZoCWgPQwiYvWw77WxuQJSGlFKUaBVNEQFoFkdAlvg1hgE2YXV9lChoBmgJaA9DCPxVgO92JHJAlIaUUpRoFU0rAWgWR0CW+DFtsN2DdX2UKGgGaAloD0MICTiEKrWGcUCUhpRSlGgVTS4BaBZHQJb6cYyfthN1fZQoaAZoCWgPQwhPBdzzvJdwQJSGlFKUaBVNAAFoFkdAlvrO2qkuYnV9lChoBmgJaA9DCOgTeZI0F3JAlIaUUpRoFU0cAWgWR0CW+ueO4oZydX2UKGgGaAloD0MIZK4Mqk1ScUCUhpRSlGgVTSABaBZHQJb7jYao/A11fZQoaAZoCWgPQwjHEAAc++JvQJSGlFKUaBVNjAFoFkdAlvwyeyzHCHV9lChoBmgJaA9DCAYQPpSoNnFAlIaUUpRoFU0mAWgWR0CW/JtT1kDqdX2UKGgGaAloD0MIylNW0/WlcECUhpRSlGgVTSQBaBZHQJb9kPQOWjZ1fZQoaAZoCWgPQwgqHaz/M85yQJSGlFKUaBVNAQFoFkdAlv5Ml5WzW3V9lChoBmgJaA9DCL2KjA7Il3FAlIaUUpRoFU1CAWgWR0CW/odELH+7dX2UKGgGaAloD0MIrJFdaVlNcECUhpRSlGgVS+9oFkdAlv6ndKujh3V9lChoBmgJaA9DCDemJywx3XFAlIaUUpRoFU0tAWgWR0CXAJYvFm4BdX2UKGgGaAloD0MIAqCKG3eScUCUhpRSlGgVTRQBaBZHQJcA/4DcM3J1fZQoaAZoCWgPQwgsuvWaHhtuQJSGlFKUaBVNLQFoFkdAlwFjy4FzMnV9lChoBmgJaA9DCKIJFLEIO21AlIaUUpRoFU0jAWgWR0CXAYPWxyGSdX2UKGgGaAloD0MIZeQs7KmjcUCUhpRSlGgVTaoBaBZHQJcB8YR/ViF1fZQoaAZoCWgPQwhQOLu1jAhyQJSGlFKUaBVNaAFoFkdAlwKHc580DXV9lChoBmgJaA9DCGTnbWx2129AlIaUUpRoFU0IAWgWR0CXAzpCrtE5dX2UKGgGaAloD0MI8z6O5sj4bUCUhpRSlGgVTREBaBZHQJcDmSKWLP51fZQoaAZoCWgPQwi63GCoQxZyQJSGlFKUaBVNBwFoFkdAlwR+7QLNOnV9lChoBmgJaA9DCB6jPPMy93BAlIaUUpRoFU0pAWgWR0CXBQfhMrVfdX2UKGgGaAloD0MIFVPpJ5zqckCUhpRSlGgVTVIBaBZHQJcFRBiTdLx1fZQoaAZoCWgPQwg9u3zrQ1JuQJSGlFKUaBVNAQFoFkdAlwaHTI/7i3V9lChoBmgJaA9DCG+cFOa90XBAlIaUUpRoFU1OAWgWR0CXB0e0Xxe+dX2UKGgGaAloD0MIdEF9yxwScUCUhpRSlGgVTWwBaBZHQJcJcuJ1q351fZQoaAZoCWgPQwiKPh9lxJNHQJSGlFKUaBVL6GgWR0CXCYj5sTFmdX2UKGgGaAloD0MI1EfgD/99c0CUhpRSlGgVTRsBaBZHQJcJ+rIYFaB1fZQoaAZoCWgPQwg/bypSYQduQJSGlFKUaBVNaQFoFkdAlwqMoH9m6HV9lChoBmgJaA9DCMtL/ie/dHJAlIaUUpRoFU0gAWgWR0CXCwA3T/hmdX2UKGgGaAloD0MI0TsVcI9hcUCUhpRSlGgVTTMBaBZHQJcLQ1zhgmZ1fZQoaAZoCWgPQwgQPSmTWstwQJSGlFKUaBVNegFoFkdAlwtJJPIn0HV9lChoBmgJaA9DCMXL07nimnBAlIaUUpRoFU01AWgWR0CXC71ivxH5dX2UKGgGaAloD0MIZcVwdUBDcUCUhpRSlGgVTQoBaBZHQJcML6wdKdx1fZQoaAZoCWgPQwh1q+ekN9lyQJSGlFKUaBVNMQFoFkdAlwybeZXuE3V9lChoBmgJaA9DCLcJ98q8w3FAlIaUUpRoFUviaBZHQJcMz5uZThp1fZQoaAZoCWgPQwhcyY6NgClyQJSGlFKUaBVNLgFoFkdAlw15A6dUbXV9lChoBmgJaA9DCCe+2lHcynFAlIaUUpRoFU0WAWgWR0CXDZSEDhcadX2UKGgGaAloD0MICRnIs8tdcUCUhpRSlGgVTRUBaBZHQJcPTVkMCtB1fZQoaAZoCWgPQwivfQG9cC9DQJSGlFKUaBVLzWgWR0CXD6fgJkXldX2UKGgGaAloD0MIGArYDsZycECUhpRSlGgVTRgBaBZHQJcQHAM2FWZ1fZQoaAZoCWgPQwg3GVWG8WNyQJSGlFKUaBVNaQFoFkdAlxB24ZuQ63V9lChoBmgJaA9DCFK13QRffW5AlIaUUpRoFU0RAWgWR0CXKjAuIyj6dX2UKGgGaAloD0MIhPOpY1VWcUCUhpRSlGgVS/doFkdAlyuLW3BpH3V9lChoBmgJaA9DCK67eaoDSXFAlIaUUpRoFU0bAWgWR0CXK/UzsQd0dX2UKGgGaAloD0MIAfkSKrgVcECUhpRSlGgVTRUBaBZHQJcsCNkvsZ51fZQoaAZoCWgPQwjImSZsP7FxQJSGlFKUaBVNOgFoFkdAlyyZG4I8hnV9lChoBmgJaA9DCFN7EW3H3XBAlIaUUpRoFU0AAWgWR0CXLO0Nz8xcdX2UKGgGaAloD0MI0uC2tnCackCUhpRSlGgVTTEBaBZHQJctAk6cRUZ1fZQoaAZoCWgPQwjAywwb5WNwQJSGlFKUaBVNMAFoFkdAly4Gbb1yvXV9lChoBmgJaA9DCGE3bFuUeG9AlIaUUpRoFU0iAWgWR0CXLk77Kq4pdX2UKGgGaAloD0MIgNJQo5DpcUCUhpRSlGgVTR0BaBZHQJcu9hb4agp1fZQoaAZoCWgPQwiHp1fKsg5tQJSGlFKUaBVNGwFoFkdAly8HQY1pCnV9lChoBmgJaA9DCKBTkJ+NXm1AlIaUUpRoFUv8aBZHQJcv7PyCnP51fZQoaAZoCWgPQwjCvTJv1UlwQJSGlFKUaBVNAwFoFkdAlzCBmGucMHV9lChoBmgJaA9DCOxQTUkW5XBAlIaUUpRoFU0mAWgWR0CXMhyu6mO3dX2UKGgGaAloD0MIzVmfcsy/bECUhpRSlGgVS/RoFkdAlzQ5wS8J2XV9lChoBmgJaA9DCK8GKA018GxAlIaUUpRoFUv+aBZHQJc13r4WUKR1fZQoaAZoCWgPQwj2JLA5RwNxQJSGlFKUaBVNTAFoFkdAlzX5UgjhUHV9lChoBmgJaA9DCOZY3lUPPnJAlIaUUpRoFU0oAWgWR0CXNgRKHwgDdX2UKGgGaAloD0MI+l5DcFwMQkCUhpRSlGgVS9FoFkdAlzaC0rsjV3V9lChoBmgJaA9DCP34S4v6HHFAlIaUUpRoFU0CAWgWR0CXNz3aSLZSdX2UKGgGaAloD0MIoBfuXBjsb0CUhpRSlGgVTbkBaBZHQJc4VxuKoAJ1fZQoaAZoCWgPQwj9SXzuhIltQJSGlFKUaBVNHQFoFkdAlziOR9w3pHV9lChoBmgJaA9DCCo5J/aQRXFAlIaUUpRoFU1TAWgWR0CXOKf9P1tgdX2UKGgGaAloD0MIeLZHb3irckCUhpRSlGgVTQMBaBZHQJc5aobXHzZ1fZQoaAZoCWgPQwh88rBQa/JwQJSGlFKUaBVNOgFoFkdAlzowmE4//3V9lChoBmgJaA9DCAq9/iR+IHJAlIaUUpRoFU2CAWgWR0CXOocd5prUdX2UKGgGaAloD0MImYHK+PdbbUCUhpRSlGgVTRcBaBZHQJc6m01IiC91fZQoaAZoCWgPQwigwabOI61wQJSGlFKUaBVL+WgWR0CXPOl2vB8AdX2UKGgGaAloD0MI48EWu70acECUhpRSlGgVTWABaBZHQJc+ls3yZrp1fZQoaAZoCWgPQwi46jpU06hwQJSGlFKUaBVNEAFoFkdAlz85fdAPd3V9lChoBmgJaA9DCI7MI38wqW9AlIaUUpRoFU0EAWgWR0CXP01cMVk+dX2UKGgGaAloD0MIAWvVrkkCcUCUhpRSlGgVTRoBaBZHQJc/jAh0Qsh1fZQoaAZoCWgPQwjmPc40IVtyQJSGlFKUaBVNcQNoFkdAlz+4HcDbJ3V9lChoBmgJaA9DCASuK2bEPHFAlIaUUpRoFU0DAWgWR0CXP/Dxsl9jdX2UKGgGaAloD0MISyL7IAtVckCUhpRSlGgVS+VoFkdAlz/wpSaVlnV9lChoBmgJaA9DCLNF0m70k1FAlIaUUpRoFUvQaBZHQJdAQgOjIq91fZQoaAZoCWgPQwhYrrfN1BJxQJSGlFKUaBVNUQFoFkdAl0EUZm7J4nV9lChoBmgJaA9DCD3X9+Eg4W5AlIaUUpRoFU0pAWgWR0CXQgSOR1YAdX2UKGgGaAloD0MI8Il1qrxCckCUhpRSlGgVTVIBaBZHQJdDUIE8q4J1fZQoaAZoCWgPQwir6A/NPOltQJSGlFKUaBVNGQFoFkdAl0Ni5/b0v3V9lChoBmgJaA9DCJ0Te2hf4HBAlIaUUpRoFU0sAWgWR0CXRAo0ygwodX2UKGgGaAloD0MIX16AffTJcECUhpRSlGgVTU8BaBZHQJdEtHy3CsR1fZQoaAZoCWgPQwhK7xtf+6FxQJSGlFKUaBVNDQFoFkdAl0WAl4TsY3V9lChoBmgJaA9DCMsPXOWJK3FAlIaUUpRoFUv3aBZHQJdG9t3wCr91fZQoaAZoCWgPQwhinpW0IotxQJSGlFKUaBVL9WgWR0CXR1G8mKIjdX2UKGgGaAloD0MI8BmJ0MhRckCUhpRSlGgVTRwBaBZHQJdHr101ZT11fZQoaAZoCWgPQwgdyeU/pAdUQJSGlFKUaBVL02gWR0CXR9aC+UQkdX2UKGgGaAloD0MIPiR87++7b0CUhpRSlGgVTQ4BaBZHQJdICKWLP2R1fZQoaAZoCWgPQwggRgiPtt1xQJSGlFKUaBVL+mgWR0CXSCSA6MisdX2UKGgGaAloD0MIea7vwwEncUCUhpRSlGgVTSEBaBZHQJdIXHmzSkV1fZQoaAZoCWgPQwjzOXe7Hu9wQJSGlFKUaBVNFgFoFkdAl0ihcE/0NHV9lChoBmgJaA9DCByWBn6UqXBAlIaUUpRoFU0vAWgWR0CXSVJtzjm0dX2UKGgGaAloD0MIesVTjzT6QUCUhpRSlGgVS8JoFkdAl0q80cfeUXVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
tkLunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e9b3cd18ffe4d6cc08817b6a298c6fd851366067843990343a2c5a9e357cdec
|
3 |
+
size 87929
|
tkLunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d64c20d635389561d20a60547578bb2350cd6968b012fc9b30c82822b6a3f9cb
|
3 |
+
size 43393
|
tkLunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
tkLunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|