|
from dataclasses import dataclass
|
|
from typing import List, Optional, Tuple, Union
|
|
import ast
|
|
import re
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn, Tensor
|
|
from torch.nn import functional as F
|
|
|
|
from transformers import PreTrainedModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
from transformers.generation.utils import GenerateOutput
|
|
from transformers import CLIPVisionModel, CLIPImageProcessor, SiglipVisionModel, SiglipImageProcessor
|
|
|
|
from .configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, PhiForCausalLM
|
|
|
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
|
WORKER_HEART_BEAT_INTERVAL = 15
|
|
|
|
LOGDIR = "."
|
|
|
|
|
|
|
|
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
from numbers import Number
|
|
from typing import List, Optional, Union
|
|
|
|
|
|
|
|
|
|
ACT_TYPE = {
|
|
'relu': nn.ReLU,
|
|
'gelu': nn.GELU
|
|
}
|
|
|
|
class Connector(nn.Module):
|
|
def __init__(self, config=None):
|
|
super().__init__()
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
|
|
act_type = config.connector_type.split('_')[-1]
|
|
mlp_depth = int(mlp_gelu_match.group(1))
|
|
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
|
|
for _ in range(1, mlp_depth):
|
|
modules.append(ACT_TYPE[act_type]())
|
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
|
|
|
self._connector = nn.Sequential(*modules)
|
|
|
|
def forward(self, x):
|
|
return self._connector(x)
|
|
|
|
class VisionTower(nn.Module):
|
|
def __init__(self, cfg, model_name_or_path = 'clip'):
|
|
super().__init__()
|
|
if 'clip' in model_name_or_path:
|
|
self._vision_tower = CLIPVisionModel(cfg)
|
|
self._image_processor = CLIPImageProcessor.from_pretrained(cfg.model_name_or_path)
|
|
else:
|
|
self._vision_tower = SiglipVisionModel(cfg)
|
|
self._image_processor = SiglipImageProcessor.from_pretrained(cfg.model_name_or_path)
|
|
|
|
self.config = cfg
|
|
|
|
def forward(self, x, **kwargs):
|
|
image_features = self._vision_tower(x, output_hidden_states=True)
|
|
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
|
|
|
|
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
|
|
image_features = image_features[:, 1:]
|
|
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
|
|
image_features = image_features
|
|
else:
|
|
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
|
|
|
|
return image_features
|
|
|
|
@property
|
|
def vision_tower(self):
|
|
return self._vision_tower
|
|
|
|
@vision_tower.setter
|
|
def vision_tower(self, vision_tower):
|
|
self._vision_tower = vision_tower
|
|
|
|
def get_value_from_kwargs(kwargs, name):
|
|
if name in kwargs:
|
|
return kwargs.pop(name)
|
|
else:
|
|
return None
|
|
|
|
|
|
class TinyLlavaPreTrainedModel(PreTrainedModel):
|
|
config_class = TinyLlavaConfig
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["LlavaVisionAttention"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
|
|
def _init_weights(self, module):
|
|
std = (
|
|
self.config.initializer_range
|
|
if hasattr(self.config, "initializer_range")
|
|
else self.config.text_config.initializer_range
|
|
)
|
|
|
|
if hasattr(module, "class_embedding"):
|
|
module.class_embedding.data.normal_(mean=0.0, std=std)
|
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
@property
|
|
def _supports_sdpa(self):
|
|
return self.language_model._supports_sdpa
|
|
|
|
|
|
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
|
|
def __init__(self, config: TinyLlavaConfig):
|
|
|
|
super().__init__(config)
|
|
|
|
self.language_model = PhiForCausalLM(config.text_config)
|
|
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
|
|
self.connector = Connector(config)
|
|
self.post_init()
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
return self.language_model.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.language_model.set_input_embeddings(value)
|
|
|
|
def get_output_embeddings(self):
|
|
return self.language_model.get_output_embeddings()
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.language_model.set_output_embeddings(new_embeddings)
|
|
|
|
def set_decoder(self, decoder):
|
|
self.language_model.set_decoder(decoder)
|
|
|
|
def get_decoder(self):
|
|
return self.language_model.get_decoder()
|
|
|
|
def tie_weights(self):
|
|
return self.language_model.tie_weights()
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
|
self.config.vocab_size = model_embeds.num_embeddings
|
|
self.vocab_size = model_embeds.num_embeddings
|
|
return model_embeds
|
|
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
images: Optional[torch.FloatTensor] = None,
|
|
image_sizes: Optional[List[List[int]]] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
if inputs_embeds is None:
|
|
(
|
|
input_ids,
|
|
position_ids,
|
|
attention_mask,
|
|
past_key_values,
|
|
inputs_embeds,
|
|
labels
|
|
) = self.prepare_inputs_labels_for_multimodal(
|
|
input_ids,
|
|
position_ids,
|
|
attention_mask,
|
|
past_key_values,
|
|
labels,
|
|
images,
|
|
image_sizes
|
|
)
|
|
return self.language_model.forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
inputs: Optional[torch.Tensor] = None,
|
|
images: Optional[torch.Tensor] = None,
|
|
image_sizes: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> Union[GenerateOutput, torch.LongTensor]:
|
|
position_ids = kwargs.pop("position_ids", None)
|
|
attention_mask = kwargs.pop("attention_mask", None)
|
|
if "inputs_embeds" in kwargs:
|
|
raise NotImplementedError("`inputs_embeds` is not supported")
|
|
|
|
if images is not None:
|
|
(
|
|
inputs,
|
|
position_ids,
|
|
attention_mask,
|
|
_,
|
|
inputs_embeds,
|
|
_
|
|
) = self.prepare_inputs_labels_for_multimodal(
|
|
inputs,
|
|
position_ids,
|
|
attention_mask,
|
|
None,
|
|
None,
|
|
images,
|
|
image_sizes=image_sizes
|
|
)
|
|
else:
|
|
inputs_embeds = self.language_model.get_input_embeddings()(inputs)
|
|
|
|
return self.language_model.generate(
|
|
position_ids=position_ids,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
**kwargs
|
|
)
|
|
|
|
def encode_images(self, images):
|
|
kwargs = {}
|
|
kwargs['vision_feature_layer'] = self.config.vision_feature_layer
|
|
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
|
|
images = images.to(device=self.device, dtype=self.dtype)
|
|
image_features = self.vision_tower(images, **kwargs)
|
|
image_features = self.connector(image_features)
|
|
return image_features
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
|
inputs_embeds=None, **kwargs):
|
|
images = kwargs.pop("images", None)
|
|
image_sizes = kwargs.pop("image_sizes", None)
|
|
inputs = self.language_model.prepare_inputs_for_generation(
|
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
|
)
|
|
if images is not None:
|
|
inputs['images'] = images
|
|
if image_sizes is not None:
|
|
inputs['image_sizes'] = image_sizes
|
|
return inputs
|
|
|
|
def prepare_inputs_labels_for_multimodal(
|
|
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
|
images, image_sizes=None
|
|
):
|
|
vision_tower = self.vision_tower
|
|
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
|
|
|
|
|
image_features = self.encode_images(images)
|
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False):
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
_labels = labels
|
|
_position_ids = position_ids
|
|
_attention_mask = attention_mask
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
|
else:
|
|
attention_mask = attention_mask.bool()
|
|
if position_ids is None:
|
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
|
if labels is None:
|
|
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
|
|
|
|
|
_input_ids = input_ids
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
|
|
|
new_input_embeds = []
|
|
new_labels = []
|
|
cur_image_idx = 0
|
|
for batch_idx, cur_input_ids in enumerate(input_ids):
|
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
|
if num_images == 0:
|
|
cur_image_features = image_features[cur_image_idx]
|
|
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
|
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
|
new_input_embeds.append(cur_input_embeds)
|
|
new_labels.append(labels[batch_idx])
|
|
cur_image_idx += 1
|
|
continue
|
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
|
cur_input_ids_noim = []
|
|
cur_labels = labels[batch_idx]
|
|
cur_labels_noim = []
|
|
for i in range(len(image_token_indices) - 1):
|
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
|
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
|
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
|
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
|
cur_new_input_embeds = []
|
|
cur_new_labels = []
|
|
|
|
for i in range(num_images + 1):
|
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
|
cur_new_labels.append(cur_labels_noim[i])
|
|
if i < num_images:
|
|
cur_image_features = image_features[cur_image_idx]
|
|
cur_image_idx += 1
|
|
cur_new_input_embeds.append(cur_image_features)
|
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
|
cur_new_labels = torch.cat(cur_new_labels)
|
|
|
|
new_input_embeds.append(cur_new_input_embeds)
|
|
new_labels.append(cur_new_labels)
|
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
|
if tokenizer_model_max_length is not None:
|
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds)
|
|
batch_size = len(new_input_embeds)
|
|
|
|
new_input_embeds_padded = []
|
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
|
cur_len = cur_new_embed.shape[0]
|
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
|
new_input_embeds_padded.append(torch.cat((
|
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
|
cur_new_embed
|
|
), dim=0))
|
|
if cur_len > 0:
|
|
new_labels_padded[i, -cur_len:] = cur_new_labels
|
|
attention_mask[i, -cur_len:] = True
|
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
|
else:
|
|
new_input_embeds_padded.append(torch.cat((
|
|
cur_new_embed,
|
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
|
), dim=0))
|
|
if cur_len > 0:
|
|
new_labels_padded[i, :cur_len] = cur_new_labels
|
|
attention_mask[i, :cur_len] = True
|
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
|
|
|
if _labels is None:
|
|
new_labels = None
|
|
else:
|
|
new_labels = new_labels_padded
|
|
|
|
if _attention_mask is None:
|
|
attention_mask = None
|
|
else:
|
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
|
|
|
if _position_ids is None:
|
|
position_ids = None
|
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
|
|
|
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
|
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration) |