kimi-k2.5 / tokenization_kimi.py
yujiepan's picture
Upload folder using huggingface_hub
14f47b2 verified
import os
from collections import OrderedDict
from logging import getLogger
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, cast
import tiktoken
from tiktoken.load import load_tiktoken_bpe
from tokenizers import AddedToken
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
from transformers.tokenization_utils import PreTrainedTokenizer
from .tool_declaration_ts import encode_tools_to_typescript_style
logger = getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
class TikTokenTokenizer(PreTrainedTokenizer):
"""
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
The path to the Tiktoken model file.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
The end of sequence token.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. The second to last item in special_tokens.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (list of `str`, *optional*):
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
skipped when decoding if `skip_special_tokens` is set to `True`.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
special_tokens: Dict[str, int]
num_reserved_special_tokens = 256
pat_str = "|".join([
r"""[\p{Han}]+""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""\p{N}{1,3}""",
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
r"""\s*[\r\n]+""",
r"""\s+(?!\S)""",
r"""\s+""",
])
def __init__(
self,
vocab_file,
bos_token: Union[str, AddedToken] = "[BOS]",
eos_token: Union[str, AddedToken] = "[EOS]",
unk_token: Union[str, AddedToken, None] = None,
pad_token: Union[str, AddedToken, None] = None,
additional_special_tokens: List[str] = None,
added_tokens_decoder: Optional[dict] = None,
**kwargs,
):
assert os.path.isfile(vocab_file), vocab_file
if additional_special_tokens is None:
additional_special_tokens = [
"<|im_end|>",
"<|im_user|>",
"<|im_assistant|>",
"<|start_header_id|>",
"<|end_header_id|>",
"[EOT]",
"<|im_system|>",
"<|im_middle|>",
]
if added_tokens_decoder:
special_tokens_mapping = {
i: added_tokens_decoder[i].content
for i in added_tokens_decoder
}
else:
special_tokens_mapping = {}
self.vocab_file = vocab_file
mergeable_ranks = load_tiktoken_bpe(vocab_file)
num_base_tokens = len(mergeable_ranks)
self.special_tokens = {
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i
for i in range(num_base_tokens, num_base_tokens +
self.num_reserved_special_tokens)
}
self.model = tiktoken.Encoding(
name=Path(vocab_file).name,
pat_str=self.pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens,
)
logger.info(f"Reloaded tiktoken model from {vocab_file}")
self.n_words: int = self.model.n_vocab
# BOS / EOS token IDs
self.bos_id: int = self.special_tokens[str(bos_token)]
self.eos_id: int = self.special_tokens[str(eos_token)]
logger.info(
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
)
self.pad_id: int = self.special_tokens[str(pad_token)]
self.unk_id: int = self.special_tokens[str(unk_token)]
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.decoder = {}
for i in range(self.n_words):
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
decoding = ''.join([
self.byte_encoder[ord(char)] for char in
self.model.decode_single_token_bytes(i).decode('latin-1')
])
self.decoder[i] = decoding
self.encoder = {}
for i in range(self.n_words):
if i in self.decoder:
self.encoder[self.decoder[i]] = i
self._token_config_cache = OrderedDict()
self._cache_max_size = 128
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=additional_special_tokens,
added_tokens_decoder=added_tokens_decoder,
**kwargs,
)
self.all_special_ids_set = set(self.all_special_ids)
def encode(self,
text: str,
allow_special_tokens: bool = True,
**kwargs) -> List[int]:
"""
Encodes a string into a list of token IDs.
Args:
text (str): The input string to be encoded.
Returns:
list[int]: A list of token IDs.
"""
# If there are other args, we should call super().encode because there are a lot of code
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
# NOTE: our encode method is not compatible with the super().encode method,
# e.g. split_special_tokens' default is True in our encode method.
if len(kwargs) > 0:
logger.warning(f"Calling super().encode with {kwargs}")
return super().encode(text, **kwargs)
assert type(text) is str
# The tiktoken tokenizer can handle <=400k chars without
# pyo3_runtime.PanicException.
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
# https://github.com/openai/tiktoken/issues/195
# Here we iterate over subsequences and split if we exceed the limit
# of max consecutive non-whitespace or whitespace characters.
MAX_NO_WHITESPACES_CHARS = 25_000
texts = self.pre_tokenizer_process(text)
all_substrs = []
for text in texts:
substrs = (
substr for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
for substr in self._split_whitespaces_or_nonwhitespaces(
text[i:i +
TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS))
all_substrs.extend(substrs)
t: List[int] = []
for substr in all_substrs:
if allow_special_tokens:
t.extend(
# we should consider special token as a common token
self.model.encode(
substr,
allowed_special="all",
))
else:
t.extend(
# we should consider special token as a common token
self.model.encode(
substr,
disallowed_special=(),
))
return t
def decode(self, token_ids: Union[int, List[int]], **kwargs) -> str:
"""
Decodes a list of token IDs into a string.
Args:
token_ids (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
# If there are other args, we should call super().decode because there are a lot of code
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
if len(kwargs) > 0:
return super().decode(token_ids, **kwargs)
if type(token_ids) is int:
token_ids = [token_ids]
return self.model.decode(cast(List[int], token_ids))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(
s: str, max_consecutive_slice_len: int) -> Iterator[str]:
"""
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
consecutive whitespaces or consecutive non-whitespaces.
"""
current_slice_len = 0
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
slice_start = 0
for i in range(len(s)):
is_now_space = s[i].isspace()
if current_slice_is_space ^ is_now_space:
current_slice_len = 1
current_slice_is_space = is_now_space
else:
current_slice_len += 1
if current_slice_len > max_consecutive_slice_len:
yield s[slice_start:i]
slice_start = i
current_slice_len = 1
yield s[slice_start:]
def pre_tokenizer_process(self, text: str) -> List[str]:
"""
pre-tokenizes the input text into a list of tokens.
This method is used to split the input text into smaller chunks for internal processing.
"""
return [text]
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
@property
def vocab_size(self) -> int:
return self.n_words
def get_vocab(self) -> Dict[str, int]:
return self.encoder
def _tokenize(self, text: str, **kwargs) -> List[str]:
return [self.decoder[t] for t in self.encode(text)]
def _convert_token_to_id(self, token: str) -> int:
return self.encoder.get(token, self.unk_id)
def _convert_id_to_token(self, index: int) -> str:
return self.decoder.get(index)
@staticmethod
def clean_up_tokenization(out_string: str) -> str:
return out_string
def convert_tokens_to_string(self, tokens: List[str]) -> str:
text = ''.join(tokens)
text = bytearray([self.byte_decoder[c]
for c in text]).decode('utf-8', 'replace')
return text
def save_vocabulary(self,
save_directory: str,
filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
raise ValueError(
f"vocabulary path ({save_directory}) should be a directory")
out_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") +
VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(
out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file, )
def apply_chat_template(self,
conversation,
tools: Optional[list[dict]] = None,
tokenize: bool = False,
add_generation_prompt: bool = True,
thinking: bool = True,
**kwargs):
tools = deep_sort_dict(tools)
# Convert tools to TypeScript style string if tools are provided
tools_ts_str = None
if tools:
try:
tools_ts_str = encode_tools_to_typescript_style(tools)
except Exception as e:
print(f"Failed to convert tools to TypeScript style: {e}")
tools_ts_str = None
# Store the TypeScript string in kwargs so it can be accessed by the template
if tools_ts_str is not None:
kwargs['tools_ts_str'] = tools_ts_str
return super().apply_chat_template(
conversation,
tools=tools,
tokenize=tokenize,
add_generation_prompt=add_generation_prompt,
thinking=thinking,
**kwargs)
def deep_sort_dict(obj: Any) -> Any:
if isinstance(obj, dict):
return {k: deep_sort_dict(v) for k, v in sorted(obj.items())}
if isinstance(obj, list):
return [deep_sort_dict(item) for item in obj]
return obj