tinnawit commited on
Commit
c7b4640
1 Parent(s): c401378

Upload DQN LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
- - name: PPO
10
  results:
11
  - task:
12
  type: reinforcement-learning
@@ -16,13 +16,13 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 265.46 +/- 19.72
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
- # **PPO** Agent playing **LunarLander-v2**
25
- This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
6
  - reinforcement-learning
7
  - stable-baselines3
8
  model-index:
9
+ - name: DQN
10
  results:
11
  - task:
12
  type: reinforcement-learning
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 129.20 +/- 166.83
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **DQN** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2351830d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2351830dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2351830e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2351830ee0>", "_build": "<function ActorCriticPolicy._build at 0x7a2351830f70>", "forward": "<function ActorCriticPolicy.forward at 0x7a2351831000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2351831090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2351831120>", "_predict": "<function ActorCriticPolicy._predict at 0x7a23518311b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2351831240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a23518312d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2351831360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a23517bf380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712126605537518789, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0bir0rPFE/DJy5vcuy1b5IFPa9eE7avQAAAAAAAAAAmhTJvOEIlLpjN2C2WlJOsZu8wTqDdIM1AACAPwAAgD/NRKU8VfewP65fiD1m3dW+RtuyvLMLOjcAAAAAAAAAADPq172xC8s9K8ZgPtzwj74PQ+89/qGnvQAAAAAAAAAA5nhHPUhPtroi0JUyrURcsFPn07kWDBOzAACAPwAAgD+6zGO+gOSfP7E6hr4pWfa+9yPFvnIrcj0AAAAAAAAAAE3luD091I4/dmxOPixg9L7zHTM+9ZRXPQAAAAAAAAAAHY+Dvt9GGj8N0ls+j+T6vqD+kb42l6E+AAAAAAAAAAAAQnI8e4TNusZOVTt5nC48EPDqu6GzIj0AAIA/AACAP+BwHj6Rpok/TqjdPn6y2b71P2U+rnpRPgAAAAAAAAAAQC+nPXUPtj8Fwt4+heZKvsbRwj2/9CA+AAAAAAAAAACa/eS7rrGPumuY8LJOpz2w+01Bu45xtTMAAIA/AACAPxPsWb5DXAg/uh2JPoBqsr6emvk75/XEPQAAAAAAAAAAM+b6PCkYHboRzD8ySckssY3vRrqz0I6yAACAPwAAgD/mub49FKqWusxqqrugDzE4Cm4Gu3szBDgAAIA/AAAAAAAy4zy8PZ4+SufUvRVWi76L3Zq9d9lLPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDY5xrBTGaMAWyUTQYBjAF0lEdAlJmKnBLwnnV9lChoBkdAcCYCT2WY4WgHTVYBaAhHQJSZlBiTdLx1fZQoaAZHQHJCo/zJ6ppoB0voaAhHQJSaPDR+jM51fZQoaAZHQHAA9ZaFEiNoB01fAWgIR0CUmwi48U22dX2UKGgGR0BzkHru6VdHaAdNCQFoCEdAlJswq3EycnV9lChoBkdAce/pkf9xZWgHTXcBaAhHQJSbx1JUYKp1fZQoaAZHQG3qBXr+o99oB00CAWgIR0CUnW2b5M11dX2UKGgGR0BwHZiDujREaAdNTgFoCEdAlJ3zpPhybXV9lChoBkdAcBCHoHLRr2gHTRABaAhHQJSeNL/S6Ud1fZQoaAZHQHKZeu7pV0doB01zAWgIR0CUnngNwzcidX2UKGgGR0By1faTOgQIaAdNMgFoCEdAlJ/undfsu3V9lChoBkdAcs+HFPznR2gHS95oCEdAlKAbt7a7E3V9lChoBkdAcozajvd/KGgHTSQBaAhHQJSgKf029+R1fZQoaAZHQHCDJBkZrHloB00MAWgIR0CUoNUYKpkxdX2UKGgGR0Bxzf/Pw/gSaAdNLQFoCEdAlKL9wJgLJHV9lChoBkdAbnSJQcghbGgHTQIBaAhHQJSjX+ee4Cp1fZQoaAZHQHIbTEJjUd9oB00nAWgIR0CUo5iL2pQ2dX2UKGgGR0BxrOPNmlImaAdNiQFoCEdAlKR3R9gF5nV9lChoBkdAcc14Cp3otGgHTVgBaAhHQJSkhxJd0JZ1fZQoaAZHQHFNB0lqrR1oB00dAWgIR0CUpOohIOH4dX2UKGgGR0BxDDS3LFGYaAdNRAFoCEdAlKVwoLG7z3V9lChoBkdAYQVl8PWhAWgHTegDaAhHQJSmAMgEEDB1fZQoaAZHQHBB2vKU3XJoB0v9aAhHQJSmOxptaZB1fZQoaAZHQG+FSv9tMwloB00MAWgIR0CUpnGHYYixdX2UKGgGR0Bz1Ek4WDYiaAdNBgFoCEdAlKa8PvrnknV9lChoBkdARCSAavRqoWgHS+hoCEdAlKeC3LFGX3V9lChoBkdAcercgQpWm2gHTUUBaAhHQJSnqqyWzGB1fZQoaAZHQHMRdwFTvRZoB00UAWgIR0CUqNmjCYTkdX2UKGgGR0BxcoG/vfCRaAdNAwFoCEdAlKkGQbMot3V9lChoBkdAbPUkM1CPZWgHTSUBaAhHQJSpJvZRKpV1fZQoaAZHQHJlPpt78eloB0v8aAhHQJSqpvLowEh1fZQoaAZHQHGT2eg+QltoB0v7aAhHQJSq7bItDlZ1fZQoaAZHQHIh8KTjebdoB0vzaAhHQJSrqCmMwUR1fZQoaAZHQHKua/mDDj1oB0vzaAhHQJSrts54nnd1fZQoaAZHQHE3ouscQy1oB0vraAhHQJSsWqebutx1fZQoaAZHQHJWgi7kGRpoB00mAWgIR0CUrIQnhKlIdX2UKGgGR0Bw9ou27Wd3aAdNFQFoCEdAlK05Ex7AtXV9lChoBkdAbza1sLv1DmgHTSwBaAhHQJSvJ4JNTLp1fZQoaAZHQHHFSLVFx4poB0vRaAhHQJSvV7kXDWN1fZQoaAZHQHBg9HQQcxVoB00aAWgIR0CUr2Y8Md92dX2UKGgGR0BuVz2Bas6raAdNAgFoCEdAlK94xDb8FnV9lChoBkdAbvBkS26TXGgHTQIBaAhHQJSvor/bTMJ1fZQoaAZHQG6/tSAH3URoB00uAWgIR0CUr7T6i0v5dX2UKGgGR0BwHcPUaybAaAdL7WgIR0CUsGS4vvjPdX2UKGgGR0Bw0sdilSCOaAdNVgFoCEdAlMTFWbPQfXV9lChoBkdAcF1CWNWEK2gHTQIBaAhHQJTFBlVcUud1fZQoaAZHQHFg0dJaq0doB0vvaAhHQJTHIjRlYlp1fZQoaAZHQHEfzXrdFfBoB00RAWgIR0CUx2bLlmvodX2UKGgGR0BwitWV/tpmaAdNEAFoCEdAlMgZPRArx3V9lChoBkdAcLQisGPgemgHS+5oCEdAlMiFkQPI4nV9lChoBkdAcZGpDeCTU2gHTQYBaAhHQJTIlWbPQfJ1fZQoaAZHQHKs1TisGPhoB012AWgIR0CUyjTVUdaMdX2UKGgGR0Br45xtHhCMaAdNRwFoCEdAlMpyH2ys0nV9lChoBkdAcikx9oexOmgHS/JoCEdAlMqMcp9ZzXV9lChoBkdAcUihxo7FKmgHS/doCEdAlMqnkcS5AnV9lChoBkdAcjHYLb5/LGgHS/5oCEdAlMrzUutfX3V9lChoBkdAcJBSRKYiPmgHS/loCEdAlMsJOi35OHV9lChoBkdAcrnoFmnO0WgHTRcBaAhHQJTLXpiZv1l1fZQoaAZHQHD+p9RaX8hoB00yAWgIR0CUzHQyRB/rdX2UKGgGR0Bvp2vQnhKlaAdNJwFoCEdAlMzsbvPTonV9lChoBkdAb4mzw+dK/WgHTR8BaAhHQJTNI3AEdNp1fZQoaAZHQHGCI5PuXu5oB0vvaAhHQJTOJrYXfqJ1fZQoaAZHQHIuWMGX5WRoB0v2aAhHQJTO/PPcBU91fZQoaAZHQHBei+6Ae7toB00IAWgIR0CUz/hOP/70dX2UKGgGR0Bwqu4Cp3otaAdNNwFoCEdAlNAJBHCoCXV9lChoBkdAcYI8vmHP/2gHS+VoCEdAlNGA9JSR83V9lChoBkdAcpSEKmbb12gHTTgBaAhHQJTRjfP5YYB1fZQoaAZHQHDpzvVmSQpoB00HAWgIR0CU0e3qzJIUdX2UKGgGR0Bx9iLXL/0eaAdNFQFoCEdAlNIfpdKNAHV9lChoBkdAcQnZMtbs4WgHTQYBaAhHQJTSH+glF+d1fZQoaAZHQGy8Kt5le4VoB0v/aAhHQJTSNtcfNiZ1fZQoaAZHQHMQ9HQQcxVoB0vyaAhHQJTSTN+so2J1fZQoaAZHQHFZkleF+NNoB00xAWgIR0CU0xnPmgandX2UKGgGR0BxcirxRVIaaAdL9GgIR0CU093/Pw/gdX2UKGgGR0BzwgiB5HEuaAdL2mgIR0CU1GldC3PSdX2UKGgGR0ByFbsNUfgaaAdL2WgIR0CU1TPC2tuDdX2UKGgGR0ByBGqhlDneaAdNPgFoCEdAlNVi6Ymb9nV9lChoBkdAcQ+rIo3JgmgHTSUBaAhHQJTVbxVhkRV1fZQoaAZHQHHIx6Skj5doB00FAWgIR0CU11wkxASndX2UKGgGR0Bzfb7MxGlRaAdL3WgIR0CU2ChXr+o+dX2UKGgGR0BvjCP0Zm7KaAdL9mgIR0CU2FfdAPd3dX2UKGgGR0Bw8H8AJb+taAdNEwFoCEdAlNlQwCbMHXV9lChoBkdAcuL8yN4qw2gHTQIBaAhHQJTZV9a2Wpt1fZQoaAZHQHNiy+De0oloB00SAWgIR0CU2fyZrpJPdX2UKGgGR0BvjRamoBJaaAdNIgFoCEdAlNovv0AcUHV9lChoBkdAchJe/Ho5gmgHTWcBaAhHQJTaaVhTfix1fZQoaAZHQG1vJvYODrZoB00gAWgIR0CU2oRBNVR2dX2UKGgGR0BuRXttygf2aAdNDQFoCEdAlNrj8YQ8OnV9lChoBkdAcg7W9DhLoWgHS/JoCEdAlNrypvP1MHV9lChoBkdAb/vucc2itmgHTQ0BaAhHQJTcNCQcPvt1fZQoaAZHQHAwORHPNV1oB0vlaAhHQJTeWI0qH451fZQoaAZHQHHzDB/I8yNoB00wAWgIR0CU3no2n88+dX2UKGgGR0BuCQogFHJ+aAdNTQFoCEdAlN9GRigCfnV9lChoBkdAcIisxfv4NGgHTVkBaAhHQJTgB80DU3J1fZQoaAZHQHActapxWDJoB0vvaAhHQJTg+FfzBhx1fZQoaAZHQHM4SFbmlqJoB0vaaAhHQJThNKlHjId1fZQoaAZHQHAk0m+j/MpoB0vkaAhHQJTiYujASFp1fZQoaAZHQHA8lXeWOZNoB00pAWgIR0CU4nOh0yP/dX2UKGgGR0BwCbS4OMESaAdNMAFoCEdAlOKFpwjt5XV9lChoBkdAXvGmfoRqXWgHTegDaAhHQJTjFIz3yqd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7d63eeb9f1c0>", "_build": "<function DQNPolicy._build at 0x7d63eeb9f250>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7d63eeb9f2e0>", "forward": "<function DQNPolicy.forward at 0x7d63eeb9f370>", "_predict": "<function DQNPolicy._predict at 0x7d63eeb9f400>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7d63eeb9f490>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7d63eeb9f520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d63eebb5f00>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712379432009097840, "learning_rate": 0.00063, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM08/DwU3IW6ChVmO9xmZjjFaMA6PuwGugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD0+zyuCYa64Tk0NO1GmDBh4MM6RvyaswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 245, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCOH4REnb7GMAWyUS1aMAXSUR0BkU8m+j/ModX2UKGgGR7/rAT7EYO2BaAdLZmgIR0BkXdTvRZ2ZdX2UKGgGR0Bwn8xqO939aAdN7AFoCEdAZJkjSofjj3V9lChoBkdAYC5gqEvkBGgHTegDaAhHQGUACLMs6JZ1fZQoaAZHQHDJIQvpQk5oB009AWgIR0BlH3jjrAxjdX2UKGgGR0BhCu78Nx2jaAdN6ANoCEdAZYDznzQNTnV9lChoBkdAJbJul41P32gHS25oCEdAZYv/yXlbNnV9lChoBkdAP4sTakAPu2gHS1BoCEdAZZPSmZVn3HV9lChoBkdAcHDflIVdomgHTZEBaAhHQGW7O3+dbxF1fZQoaAZHQG+C0cGTs6doB00LAWgIR0Bl1aQzUI9ldX2UKGgGR0A2hNvwVj7RaAdLc2gIR0Bl4zGJemeldX2UKGgGR0BkNZeJHiFTaAdN6ANoCEdAZmSXMyJsPHV9lChoBkdAcNyeE7GNrGgHTWwBaAhHQGaISon8baR1fZQoaAZHQHKpMkMTewdoB01YAWgIR0BmqXx8UmD2dX2UKGgGR0ByiL225QP7aAdNfwFoCEdAZs7R1oxpL3V9lChoBkdAYoLYwqRU3mgHTegDaAhHQGcxkDyOJch1fZQoaAZHQGN78vVVghNoB03oA2gIR0BnmEehf0EpdX2UKGgGRz/p2Mju8brDaAdLdWgIR0BnpgvN/vv0dX2UKGgGR0BpQiqlxffGaAdN9QFoCEdAZ99KEFnqV3V9lChoBkdAblnufEn9emgHS/ZoCEdAZ/jDJlrdnHV9lChoBkdAbokG8mKIi2gHTakBaAhHQGgh943WFvh1fZQoaAZHQG8z4ODrZ8NoB03JAWgIR0BoTm8Empl0dX2UKGgGR0BZuo0uUUwjaAdN6ANoCEdAaLHGcWj46HV9lChoBkdAcjHaQmu1W2gHTSoCaAhHQGjpWcjJMg51fZQoaAZHQHHKXgk1MuhoB0vqaAhHQGkAGlImPYF1fZQoaAZHQHGQx20Re1NoB00OAWgIR0BpIELKFIuodX2UKGgGR0Bc3PU8V58jaAdN6ANoCEdAaYpLq2SdOXV9lChoBkfAZYAAsCkoF2gHS4FoCEdAaZbrMTviLnV9lChoBkdAbmYer+5vtWgHTbUDaAhHQGn0wQlKK511fZQoaAZHQHDDiWZ7XxxoB01bAWgIR0BqFswUQCjldX2UKGgGR0ByWZanrIHUaAdNdgFoCEdAajrRwZOzp3V9lChoBkdAV8Ti4rjHXGgHTegDaAhHQGqkQaisXBR1fZQoaAZHQCKTohY/3WZoB0tzaAhHQGqzFId2gWd1fZQoaAZHQHCACgPEsJ9oB02IAWgIR0Bq3MjVx0dSdX2UKGgGR8BhJqZYxL00aAdN8gFoCEdAaw0zF+/gznV9lChoBkdARlr3yqdYn2gHS4NoCEdAaxmQFs54nnV9lChoBkdASCb1K5Cng2gHS1toCEdAayJUIcBEKHV9lChoBkfAZ1/0q6OHWWgHS6doCEdAazKRQrMC93V9lChoBkfAaWyTcqOLi2gHTUkDaAhHQGuEFVktmL91fZQoaAZHQHDo318LKFJoB00lAWgIR0BroUB6rvLHdX2UKGgGR0BnjwPuogmraAdN6ANoCEdAbANHBk7OmnV9lChoBkdAcM+XfqHGj2gHS7doCEdAbBoxlg+hXnV9lChoBkdAcVzB7NSqEWgHTRgDaAhHQGxwKc3EQ5F1fZQoaAZHQHE78g6ltTFoB03TAWgIR0BsnqxeLNwBdX2UKGgGR0By8V8IAwPAaAdNjQFoCEdAbMSzabnX/nV9lChoBkdAbhkVBUrCnGgHTQUBaAhHQGzd8+iaiK11fZQoaAZHQCTQV45cTrVoB0uKaAhHQGzrYwyqMm51fZQoaAZHQHHro4+8oQZoB00hAWgIR0BtCAQWepXIdX2UKGgGR0Bxhe/8EV32aAdNugFoCEdAbTN/J/5Ly3V9lChoBkdAcWDcU/OdG2gHTUwBaAhHQG1WVc2R7qp1fZQoaAZHQHItC/bj94xoB03YAWgIR0BtiBwsGxD9dX2UKGgGR0BySGIbfgrIaAdNTwFoCEdAbbHEkSmIkHV9lChoBkdAXg/Iq9XcQGgHTegDaAhHQG4UFEJBw/B1fZQoaAZHQHFaeVopQUJoB00dAmgIR0BuSUYEW69TdX2UKGgGR0BxdrS8an76aAdNWwFoCEdAbmqTnJT2nXV9lChoBkdAYFzowmE5AGgHTegDaAhHQG7NReTmnwZ1fZQoaAZHQHLFEpd8iOhoB00kAWgIR0Bu6ozJp35fdX2UKGgGR0BwZrSb6P8yaAdNDQNoCEdAb0ek8A7xNXV9lChoBkdAcCpYBeXzDmgHTYQCaAhHQG+GgLRa5gB1fZQoaAZHQHFIKAvtdAxoB01DAWgIR0BvphGSZBszdX2UKGgGR0BunTAeq7yyaAdNowJoCEdAb+gyWRigCnV9lChoBkdAcRWM5wOvuGgHS+9oCEdAb//NwiqyW3V9lChoBkdAcrq+BYmsvWgHS+FoCEdAcAu6asp5NXV9lChoBkdAUCCDbrTpgWgHTegDaAhHQHA/cMI/qxF1fZQoaAZHQGXiMhgVoHtoB03oA2gIR0Bwdr6BRQ7+dX2UKGgGR0Bypdc/t6X0aAdNxAFoCEdAcI0sfJV81HV9lChoBkfAQBh3HJcPfGgHS2NoCEdAcJIPJaJQ+HV9lChoBkdAct9J8v24/mgHTYoCaAhHQHCyw2VE/jd1fZQoaAZHQHCBzxPO6d1oB00TAWgIR0BwwJ24d6sydX2UKGgGR0Bs7WS6lLvkaAdNBgFoCEdAcM2Z2IO6NHV9lChoBkdAbtnmoR7JGWgHTakCaAhHQHDu2e6I3zd1fZQoaAZHQHD8d/SYw7FoB01YAWgIR0BxAjv8ZUDMdX2UKGgGR0By3vw1BMSLaAdNPgNoCEdAcTEdeY2KmHV9lChoBkdAcECupS75EmgHTcACaAhHQHFUZr1uivh1fZQoaAZHQGcVaLwWnCRoB03oA2gIR0BxhucSXdCWdX2UKGgGR0ByITOhTOxCaAdNawFoCEdAcZmfQKKHf3V9lChoBkdAbzQxoIv8ImgHTdYCaAhHQHG/6nWJ79h1fZQoaAZHQEgy1NxlxwRoB0tYaAhHQHHFUFfReC11fZQoaAZHQHL6gvpQk5ZoB03SAWgIR0Bx4P80k4WDdX2UKGgGR0BiED8YQ8OkaAdN6ANoCEdAchQTVDrquHV9lChoBkfANb8g6ltTDWgHS1NoCEdAchgNKyv9tXV9lChoBkfAUdLqv/zasmgHSzdoCEdAchqzq8lHBnV9lChoBkdAPKhIre67NGgHS39oCEdAciDhSLqD9XV9lChoBkdAcrD29tdiUmgHTaYDaAhHQHJPT/ACW/t1fZQoaAZHQHHt2zByjpNoB0vMaAhHQHJZRR64Uex1fZQoaAZHwDOKT4cm0E5oB0teaAhHQHJdqFmFrVR1fZQoaAZHQHDHWSIP9UFoB02TAWgIR0BycUTHsC1adX2UKGgGR0BxEGglF+d9aAdNCwFoCEdAcoC5WzWwvHV9lChoBkdAcUhn9vS+g2gHS7doCEdAcoxHyVfNRnV9lChoBkdAcfA/wRXfZWgHTRIDaAhHQHK1jmOlwcZ1fZQoaAZHQGouR7qptJpoB03tAWgIR0ByzY+5e7cxdX2UKGgGR0BnIRbSqlxfaAdN6ANoCEdAcv/e9Ba9snV9lChoBkdAcl6PfKp1imgHS/RoCEdAcwvdcjZ+QXV9lChoBkdAbIy4XoC+12gHTbIBaAhHQHMhepjtoi91fZQoaAZHQF6tjY7JW/9oB03oA2gIR0BzY70EovzwdX2UKGgGR0Bus9O/L1VYaAdNeQFoCEdAc3ZIjW07bXV9lChoBkdAYrK57w8W9GgHTegDaAhHQHOnd4Vymyh1fZQoaAZHQGGGvva11GNoB03oA2gIR0Bz2Sg00m+kdX2UKGgGR0BwdZupCKJmaAdNDQJoCEdAc/LUYKpkw3V9lChoBkdAbPNj5sTFl2gHTZsBaAhHQHQJfRVp9JB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoR+uZik95OSmnXdSCS6ygbwACMA2luY5SKEctaO0s89QGSZ0M/276DyfQAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR6pNA+D4aC157BNAcTbVPhgCMA2luY5SKEP93OiQbyMr+fHXCdT24yzR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBchLSPIAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 50000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7d63eeb87640>", "add": "<function ReplayBuffer.add at 0x7d63eeb876d0>", "sample": "<function ReplayBuffer.sample at 0x7d63eeb87760>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7d63eeb877f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d63eeb88f80>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.12, "target_update_interval": 250, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
dqn-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7670f02953afcdd5d88cda2b25bad24d6517d26a9c62c05aed96620d2c568f1
3
+ size 1133084
dqn-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
dqn-LunarLander-v2/data ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7d63eeb9f1c0>",
9
+ "_build": "<function DQNPolicy._build at 0x7d63eeb9f250>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7d63eeb9f2e0>",
11
+ "forward": "<function DQNPolicy.forward at 0x7d63eeb9f370>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7d63eeb9f400>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7d63eeb9f490>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7d63eeb9f520>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7d63eebb5f00>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 100000,
26
+ "_total_timesteps": 100000.0,
27
+ "_num_timesteps_at_start": 0,
28
+ "seed": null,
29
+ "action_noise": null,
30
+ "start_time": 1712379432009097840,
31
+ "learning_rate": 0.00063,
32
+ "tensorboard_log": null,
33
+ "_last_obs": {
34
+ ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM08/DwU3IW6ChVmO9xmZjjFaMA6PuwGugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD0+zyuCYa64Tk0NO1GmDBh4MM6RvyaswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
44
+ },
45
+ "_episode_num": 245,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.0,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCOH4REnb7GMAWyUS1aMAXSUR0BkU8m+j/ModX2UKGgGR7/rAT7EYO2BaAdLZmgIR0BkXdTvRZ2ZdX2UKGgGR0Bwn8xqO939aAdN7AFoCEdAZJkjSofjj3V9lChoBkdAYC5gqEvkBGgHTegDaAhHQGUACLMs6JZ1fZQoaAZHQHDJIQvpQk5oB009AWgIR0BlH3jjrAxjdX2UKGgGR0BhCu78Nx2jaAdN6ANoCEdAZYDznzQNTnV9lChoBkdAJbJul41P32gHS25oCEdAZYv/yXlbNnV9lChoBkdAP4sTakAPu2gHS1BoCEdAZZPSmZVn3HV9lChoBkdAcHDflIVdomgHTZEBaAhHQGW7O3+dbxF1fZQoaAZHQG+C0cGTs6doB00LAWgIR0Bl1aQzUI9ldX2UKGgGR0A2hNvwVj7RaAdLc2gIR0Bl4zGJemeldX2UKGgGR0BkNZeJHiFTaAdN6ANoCEdAZmSXMyJsPHV9lChoBkdAcNyeE7GNrGgHTWwBaAhHQGaISon8baR1fZQoaAZHQHKpMkMTewdoB01YAWgIR0BmqXx8UmD2dX2UKGgGR0ByiL225QP7aAdNfwFoCEdAZs7R1oxpL3V9lChoBkdAYoLYwqRU3mgHTegDaAhHQGcxkDyOJch1fZQoaAZHQGN78vVVghNoB03oA2gIR0BnmEehf0EpdX2UKGgGRz/p2Mju8brDaAdLdWgIR0BnpgvN/vv0dX2UKGgGR0BpQiqlxffGaAdN9QFoCEdAZ99KEFnqV3V9lChoBkdAblnufEn9emgHS/ZoCEdAZ/jDJlrdnHV9lChoBkdAbokG8mKIi2gHTakBaAhHQGgh943WFvh1fZQoaAZHQG8z4ODrZ8NoB03JAWgIR0BoTm8Empl0dX2UKGgGR0BZuo0uUUwjaAdN6ANoCEdAaLHGcWj46HV9lChoBkdAcjHaQmu1W2gHTSoCaAhHQGjpWcjJMg51fZQoaAZHQHHKXgk1MuhoB0vqaAhHQGkAGlImPYF1fZQoaAZHQHGQx20Re1NoB00OAWgIR0BpIELKFIuodX2UKGgGR0Bc3PU8V58jaAdN6ANoCEdAaYpLq2SdOXV9lChoBkfAZYAAsCkoF2gHS4FoCEdAaZbrMTviLnV9lChoBkdAbmYer+5vtWgHTbUDaAhHQGn0wQlKK511fZQoaAZHQHDDiWZ7XxxoB01bAWgIR0BqFswUQCjldX2UKGgGR0ByWZanrIHUaAdNdgFoCEdAajrRwZOzp3V9lChoBkdAV8Ti4rjHXGgHTegDaAhHQGqkQaisXBR1fZQoaAZHQCKTohY/3WZoB0tzaAhHQGqzFId2gWd1fZQoaAZHQHCACgPEsJ9oB02IAWgIR0Bq3MjVx0dSdX2UKGgGR8BhJqZYxL00aAdN8gFoCEdAaw0zF+/gznV9lChoBkdARlr3yqdYn2gHS4NoCEdAaxmQFs54nnV9lChoBkdASCb1K5Cng2gHS1toCEdAayJUIcBEKHV9lChoBkfAZ1/0q6OHWWgHS6doCEdAazKRQrMC93V9lChoBkfAaWyTcqOLi2gHTUkDaAhHQGuEFVktmL91fZQoaAZHQHDo318LKFJoB00lAWgIR0BroUB6rvLHdX2UKGgGR0BnjwPuogmraAdN6ANoCEdAbANHBk7OmnV9lChoBkdAcM+XfqHGj2gHS7doCEdAbBoxlg+hXnV9lChoBkdAcVzB7NSqEWgHTRgDaAhHQGxwKc3EQ5F1fZQoaAZHQHE78g6ltTFoB03TAWgIR0BsnqxeLNwBdX2UKGgGR0By8V8IAwPAaAdNjQFoCEdAbMSzabnX/nV9lChoBkdAbhkVBUrCnGgHTQUBaAhHQGzd8+iaiK11fZQoaAZHQCTQV45cTrVoB0uKaAhHQGzrYwyqMm51fZQoaAZHQHHro4+8oQZoB00hAWgIR0BtCAQWepXIdX2UKGgGR0Bxhe/8EV32aAdNugFoCEdAbTN/J/5Ly3V9lChoBkdAcWDcU/OdG2gHTUwBaAhHQG1WVc2R7qp1fZQoaAZHQHItC/bj94xoB03YAWgIR0BtiBwsGxD9dX2UKGgGR0BySGIbfgrIaAdNTwFoCEdAbbHEkSmIkHV9lChoBkdAXg/Iq9XcQGgHTegDaAhHQG4UFEJBw/B1fZQoaAZHQHFaeVopQUJoB00dAmgIR0BuSUYEW69TdX2UKGgGR0BxdrS8an76aAdNWwFoCEdAbmqTnJT2nXV9lChoBkdAYFzowmE5AGgHTegDaAhHQG7NReTmnwZ1fZQoaAZHQHLFEpd8iOhoB00kAWgIR0Bu6ozJp35fdX2UKGgGR0BwZrSb6P8yaAdNDQNoCEdAb0ek8A7xNXV9lChoBkdAcCpYBeXzDmgHTYQCaAhHQG+GgLRa5gB1fZQoaAZHQHFIKAvtdAxoB01DAWgIR0BvphGSZBszdX2UKGgGR0BunTAeq7yyaAdNowJoCEdAb+gyWRigCnV9lChoBkdAcRWM5wOvuGgHS+9oCEdAb//NwiqyW3V9lChoBkdAcrq+BYmsvWgHS+FoCEdAcAu6asp5NXV9lChoBkdAUCCDbrTpgWgHTegDaAhHQHA/cMI/qxF1fZQoaAZHQGXiMhgVoHtoB03oA2gIR0Bwdr6BRQ7+dX2UKGgGR0Bypdc/t6X0aAdNxAFoCEdAcI0sfJV81HV9lChoBkfAQBh3HJcPfGgHS2NoCEdAcJIPJaJQ+HV9lChoBkdAct9J8v24/mgHTYoCaAhHQHCyw2VE/jd1fZQoaAZHQHCBzxPO6d1oB00TAWgIR0BwwJ24d6sydX2UKGgGR0Bs7WS6lLvkaAdNBgFoCEdAcM2Z2IO6NHV9lChoBkdAbtnmoR7JGWgHTakCaAhHQHDu2e6I3zd1fZQoaAZHQHD8d/SYw7FoB01YAWgIR0BxAjv8ZUDMdX2UKGgGR0By3vw1BMSLaAdNPgNoCEdAcTEdeY2KmHV9lChoBkdAcECupS75EmgHTcACaAhHQHFUZr1uivh1fZQoaAZHQGcVaLwWnCRoB03oA2gIR0BxhucSXdCWdX2UKGgGR0ByITOhTOxCaAdNawFoCEdAcZmfQKKHf3V9lChoBkdAbzQxoIv8ImgHTdYCaAhHQHG/6nWJ79h1fZQoaAZHQEgy1NxlxwRoB0tYaAhHQHHFUFfReC11fZQoaAZHQHL6gvpQk5ZoB03SAWgIR0Bx4P80k4WDdX2UKGgGR0BiED8YQ8OkaAdN6ANoCEdAchQTVDrquHV9lChoBkfANb8g6ltTDWgHS1NoCEdAchgNKyv9tXV9lChoBkfAUdLqv/zasmgHSzdoCEdAchqzq8lHBnV9lChoBkdAPKhIre67NGgHS39oCEdAciDhSLqD9XV9lChoBkdAcrD29tdiUmgHTaYDaAhHQHJPT/ACW/t1fZQoaAZHQHHt2zByjpNoB0vMaAhHQHJZRR64Uex1fZQoaAZHwDOKT4cm0E5oB0teaAhHQHJdqFmFrVR1fZQoaAZHQHDHWSIP9UFoB02TAWgIR0BycUTHsC1adX2UKGgGR0BxEGglF+d9aAdNCwFoCEdAcoC5WzWwvHV9lChoBkdAcUhn9vS+g2gHS7doCEdAcoxHyVfNRnV9lChoBkdAcfA/wRXfZWgHTRIDaAhHQHK1jmOlwcZ1fZQoaAZHQGouR7qptJpoB03tAWgIR0ByzY+5e7cxdX2UKGgGR0BnIRbSqlxfaAdN6ANoCEdAcv/e9Ba9snV9lChoBkdAcl6PfKp1imgHS/RoCEdAcwvdcjZ+QXV9lChoBkdAbIy4XoC+12gHTbIBaAhHQHMhepjtoi91fZQoaAZHQF6tjY7JW/9oB03oA2gIR0BzY70EovzwdX2UKGgGR0Bus9O/L1VYaAdNeQFoCEdAc3ZIjW07bXV9lChoBkdAYrK57w8W9GgHTegDaAhHQHOnd4Vymyh1fZQoaAZHQGGGvva11GNoB03oA2gIR0Bz2Sg00m+kdX2UKGgGR0BwdZupCKJmaAdNDQJoCEdAc/LUYKpkw3V9lChoBkdAbPNj5sTFl2gHTZsBaAhHQHQJfRVp9JB1ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 100000,
59
+ "observation_space": {
60
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
+ ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoR+uZik95OSmnXdSCS6ygbwACMA2luY5SKEctaO0s89QGSZ0M/276DyfQAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
62
+ "dtype": "float32",
63
+ "bounded_below": "[ True True True True True True True True]",
64
+ "bounded_above": "[ True True True True True True True True]",
65
+ "_shape": [
66
+ 8
67
+ ],
68
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
69
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
70
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
71
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
72
+ "_np_random": "Generator(PCG64)"
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR6pNA+D4aC157BNAcTbVPhgCMA2luY5SKEP93OiQbyMr+fHXCdT24yzR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBchLSPIAdWJ1Yi4=",
77
+ "n": "4",
78
+ "start": "0",
79
+ "_shape": [],
80
+ "dtype": "int64",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 1,
84
+ "buffer_size": 50000,
85
+ "batch_size": 128,
86
+ "learning_starts": 0,
87
+ "tau": 1.0,
88
+ "gamma": 0.99,
89
+ "gradient_steps": -1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7d63eeb87640>",
97
+ "add": "<function ReplayBuffer.add at 0x7d63eeb876d0>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7d63eeb87760>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7d63eeb877f0>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc._abc_data object at 0x7d63eeb88f80>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.1,
111
+ "exploration_fraction": 0.12,
112
+ "target_update_interval": 250,
113
+ "_n_calls": 100000,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.1,
116
+ "lr_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
119
+ },
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": [],
122
+ "exploration_schedule": {
123
+ ":type:": "<class 'function'>",
124
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
125
+ }
126
+ }
dqn-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cf20f8d3c753307a1459971ddb39ceef5970bed0fa93da0a9f9cf28007deb6d
3
+ size 558368
dqn-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42710b3b7f41e129c5d0650fea8b409bd3db8ac2817343164f4586e4c81754f2
3
+ size 557490
dqn-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
dqn-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 265.4583124753649, "std_reward": 19.723522577292876, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-03T07:06:50.579172"}
 
1
+ {"mean_reward": 129.20216538953858, "std_reward": 166.82987613460423, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-06T05:08:47.639465"}