Upload DQN LunarLander-v2 trained agent
Browse files- README.md +4 -4
- config.json +1 -1
- dqn-LunarLander-v2.zip +3 -0
- dqn-LunarLander-v2/_stable_baselines3_version +1 -0
- dqn-LunarLander-v2/data +126 -0
- dqn-LunarLander-v2/policy.optimizer.pth +3 -0
- dqn-LunarLander-v2/policy.pth +3 -0
- dqn-LunarLander-v2/pytorch_variables.pth +3 -0
- dqn-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **
|
25 |
-
This is a trained model of a **
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: DQN
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 129.20 +/- 166.83
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **DQN** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2351830d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2351830dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2351830e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2351830ee0>", "_build": "<function ActorCriticPolicy._build at 0x7a2351830f70>", "forward": "<function ActorCriticPolicy.forward at 0x7a2351831000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2351831090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2351831120>", "_predict": "<function ActorCriticPolicy._predict at 0x7a23518311b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2351831240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a23518312d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2351831360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a23517bf380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712126605537518789, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0bir0rPFE/DJy5vcuy1b5IFPa9eE7avQAAAAAAAAAAmhTJvOEIlLpjN2C2WlJOsZu8wTqDdIM1AACAPwAAgD/NRKU8VfewP65fiD1m3dW+RtuyvLMLOjcAAAAAAAAAADPq172xC8s9K8ZgPtzwj74PQ+89/qGnvQAAAAAAAAAA5nhHPUhPtroi0JUyrURcsFPn07kWDBOzAACAPwAAgD+6zGO+gOSfP7E6hr4pWfa+9yPFvnIrcj0AAAAAAAAAAE3luD091I4/dmxOPixg9L7zHTM+9ZRXPQAAAAAAAAAAHY+Dvt9GGj8N0ls+j+T6vqD+kb42l6E+AAAAAAAAAAAAQnI8e4TNusZOVTt5nC48EPDqu6GzIj0AAIA/AACAP+BwHj6Rpok/TqjdPn6y2b71P2U+rnpRPgAAAAAAAAAAQC+nPXUPtj8Fwt4+heZKvsbRwj2/9CA+AAAAAAAAAACa/eS7rrGPumuY8LJOpz2w+01Bu45xtTMAAIA/AACAPxPsWb5DXAg/uh2JPoBqsr6emvk75/XEPQAAAAAAAAAAM+b6PCkYHboRzD8ySckssY3vRrqz0I6yAACAPwAAgD/mub49FKqWusxqqrugDzE4Cm4Gu3szBDgAAIA/AAAAAAAy4zy8PZ4+SufUvRVWi76L3Zq9d9lLPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDY5xrBTGaMAWyUTQYBjAF0lEdAlJmKnBLwnnV9lChoBkdAcCYCT2WY4WgHTVYBaAhHQJSZlBiTdLx1fZQoaAZHQHJCo/zJ6ppoB0voaAhHQJSaPDR+jM51fZQoaAZHQHAA9ZaFEiNoB01fAWgIR0CUmwi48U22dX2UKGgGR0BzkHru6VdHaAdNCQFoCEdAlJswq3EycnV9lChoBkdAce/pkf9xZWgHTXcBaAhHQJSbx1JUYKp1fZQoaAZHQG3qBXr+o99oB00CAWgIR0CUnW2b5M11dX2UKGgGR0BwHZiDujREaAdNTgFoCEdAlJ3zpPhybXV9lChoBkdAcBCHoHLRr2gHTRABaAhHQJSeNL/S6Ud1fZQoaAZHQHKZeu7pV0doB01zAWgIR0CUnngNwzcidX2UKGgGR0By1faTOgQIaAdNMgFoCEdAlJ/undfsu3V9lChoBkdAcs+HFPznR2gHS95oCEdAlKAbt7a7E3V9lChoBkdAcozajvd/KGgHTSQBaAhHQJSgKf029+R1fZQoaAZHQHCDJBkZrHloB00MAWgIR0CUoNUYKpkxdX2UKGgGR0Bxzf/Pw/gSaAdNLQFoCEdAlKL9wJgLJHV9lChoBkdAbnSJQcghbGgHTQIBaAhHQJSjX+ee4Cp1fZQoaAZHQHIbTEJjUd9oB00nAWgIR0CUo5iL2pQ2dX2UKGgGR0BxrOPNmlImaAdNiQFoCEdAlKR3R9gF5nV9lChoBkdAcc14Cp3otGgHTVgBaAhHQJSkhxJd0JZ1fZQoaAZHQHFNB0lqrR1oB00dAWgIR0CUpOohIOH4dX2UKGgGR0BxDDS3LFGYaAdNRAFoCEdAlKVwoLG7z3V9lChoBkdAYQVl8PWhAWgHTegDaAhHQJSmAMgEEDB1fZQoaAZHQHBB2vKU3XJoB0v9aAhHQJSmOxptaZB1fZQoaAZHQG+FSv9tMwloB00MAWgIR0CUpnGHYYixdX2UKGgGR0Bz1Ek4WDYiaAdNBgFoCEdAlKa8PvrnknV9lChoBkdARCSAavRqoWgHS+hoCEdAlKeC3LFGX3V9lChoBkdAcercgQpWm2gHTUUBaAhHQJSnqqyWzGB1fZQoaAZHQHMRdwFTvRZoB00UAWgIR0CUqNmjCYTkdX2UKGgGR0BxcoG/vfCRaAdNAwFoCEdAlKkGQbMot3V9lChoBkdAbPUkM1CPZWgHTSUBaAhHQJSpJvZRKpV1fZQoaAZHQHJlPpt78eloB0v8aAhHQJSqpvLowEh1fZQoaAZHQHGT2eg+QltoB0v7aAhHQJSq7bItDlZ1fZQoaAZHQHIh8KTjebdoB0vzaAhHQJSrqCmMwUR1fZQoaAZHQHKua/mDDj1oB0vzaAhHQJSrts54nnd1fZQoaAZHQHE3ouscQy1oB0vraAhHQJSsWqebutx1fZQoaAZHQHJWgi7kGRpoB00mAWgIR0CUrIQnhKlIdX2UKGgGR0Bw9ou27Wd3aAdNFQFoCEdAlK05Ex7AtXV9lChoBkdAbza1sLv1DmgHTSwBaAhHQJSvJ4JNTLp1fZQoaAZHQHHFSLVFx4poB0vRaAhHQJSvV7kXDWN1fZQoaAZHQHBg9HQQcxVoB00aAWgIR0CUr2Y8Md92dX2UKGgGR0BuVz2Bas6raAdNAgFoCEdAlK94xDb8FnV9lChoBkdAbvBkS26TXGgHTQIBaAhHQJSvor/bTMJ1fZQoaAZHQG6/tSAH3URoB00uAWgIR0CUr7T6i0v5dX2UKGgGR0BwHcPUaybAaAdL7WgIR0CUsGS4vvjPdX2UKGgGR0Bw0sdilSCOaAdNVgFoCEdAlMTFWbPQfXV9lChoBkdAcF1CWNWEK2gHTQIBaAhHQJTFBlVcUud1fZQoaAZHQHFg0dJaq0doB0vvaAhHQJTHIjRlYlp1fZQoaAZHQHEfzXrdFfBoB00RAWgIR0CUx2bLlmvodX2UKGgGR0BwitWV/tpmaAdNEAFoCEdAlMgZPRArx3V9lChoBkdAcLQisGPgemgHS+5oCEdAlMiFkQPI4nV9lChoBkdAcZGpDeCTU2gHTQYBaAhHQJTIlWbPQfJ1fZQoaAZHQHKs1TisGPhoB012AWgIR0CUyjTVUdaMdX2UKGgGR0Br45xtHhCMaAdNRwFoCEdAlMpyH2ys0nV9lChoBkdAcikx9oexOmgHS/JoCEdAlMqMcp9ZzXV9lChoBkdAcUihxo7FKmgHS/doCEdAlMqnkcS5AnV9lChoBkdAcjHYLb5/LGgHS/5oCEdAlMrzUutfX3V9lChoBkdAcJBSRKYiPmgHS/loCEdAlMsJOi35OHV9lChoBkdAcrnoFmnO0WgHTRcBaAhHQJTLXpiZv1l1fZQoaAZHQHD+p9RaX8hoB00yAWgIR0CUzHQyRB/rdX2UKGgGR0Bvp2vQnhKlaAdNJwFoCEdAlMzsbvPTonV9lChoBkdAb4mzw+dK/WgHTR8BaAhHQJTNI3AEdNp1fZQoaAZHQHGCI5PuXu5oB0vvaAhHQJTOJrYXfqJ1fZQoaAZHQHIuWMGX5WRoB0v2aAhHQJTO/PPcBU91fZQoaAZHQHBei+6Ae7toB00IAWgIR0CUz/hOP/70dX2UKGgGR0Bwqu4Cp3otaAdNNwFoCEdAlNAJBHCoCXV9lChoBkdAcYI8vmHP/2gHS+VoCEdAlNGA9JSR83V9lChoBkdAcpSEKmbb12gHTTgBaAhHQJTRjfP5YYB1fZQoaAZHQHDpzvVmSQpoB00HAWgIR0CU0e3qzJIUdX2UKGgGR0Bx9iLXL/0eaAdNFQFoCEdAlNIfpdKNAHV9lChoBkdAcQnZMtbs4WgHTQYBaAhHQJTSH+glF+d1fZQoaAZHQGy8Kt5le4VoB0v/aAhHQJTSNtcfNiZ1fZQoaAZHQHMQ9HQQcxVoB0vyaAhHQJTSTN+so2J1fZQoaAZHQHFZkleF+NNoB00xAWgIR0CU0xnPmgandX2UKGgGR0BxcirxRVIaaAdL9GgIR0CU093/Pw/gdX2UKGgGR0BzwgiB5HEuaAdL2mgIR0CU1GldC3PSdX2UKGgGR0ByFbsNUfgaaAdL2WgIR0CU1TPC2tuDdX2UKGgGR0ByBGqhlDneaAdNPgFoCEdAlNVi6Ymb9nV9lChoBkdAcQ+rIo3JgmgHTSUBaAhHQJTVbxVhkRV1fZQoaAZHQHHIx6Skj5doB00FAWgIR0CU11wkxASndX2UKGgGR0Bzfb7MxGlRaAdL3WgIR0CU2ChXr+o+dX2UKGgGR0BvjCP0Zm7KaAdL9mgIR0CU2FfdAPd3dX2UKGgGR0Bw8H8AJb+taAdNEwFoCEdAlNlQwCbMHXV9lChoBkdAcuL8yN4qw2gHTQIBaAhHQJTZV9a2Wpt1fZQoaAZHQHNiy+De0oloB00SAWgIR0CU2fyZrpJPdX2UKGgGR0BvjRamoBJaaAdNIgFoCEdAlNovv0AcUHV9lChoBkdAchJe/Ho5gmgHTWcBaAhHQJTaaVhTfix1fZQoaAZHQG1vJvYODrZoB00gAWgIR0CU2oRBNVR2dX2UKGgGR0BuRXttygf2aAdNDQFoCEdAlNrj8YQ8OnV9lChoBkdAcg7W9DhLoWgHS/JoCEdAlNrypvP1MHV9lChoBkdAb/vucc2itmgHTQ0BaAhHQJTcNCQcPvt1fZQoaAZHQHAwORHPNV1oB0vlaAhHQJTeWI0qH451fZQoaAZHQHHzDB/I8yNoB00wAWgIR0CU3no2n88+dX2UKGgGR0BuCQogFHJ+aAdNTQFoCEdAlN9GRigCfnV9lChoBkdAcIisxfv4NGgHTVkBaAhHQJTgB80DU3J1fZQoaAZHQHActapxWDJoB0vvaAhHQJTg+FfzBhx1fZQoaAZHQHM4SFbmlqJoB0vaaAhHQJThNKlHjId1fZQoaAZHQHAk0m+j/MpoB0vkaAhHQJTiYujASFp1fZQoaAZHQHA8lXeWOZNoB00pAWgIR0CU4nOh0yP/dX2UKGgGR0BwCbS4OMESaAdNMAFoCEdAlOKFpwjt5XV9lChoBkdAXvGmfoRqXWgHTegDaAhHQJTjFIz3yqd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7d63eeb9f1c0>", "_build": "<function DQNPolicy._build at 0x7d63eeb9f250>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7d63eeb9f2e0>", "forward": "<function DQNPolicy.forward at 0x7d63eeb9f370>", "_predict": "<function DQNPolicy._predict at 0x7d63eeb9f400>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7d63eeb9f490>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7d63eeb9f520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d63eebb5f00>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712379432009097840, "learning_rate": 0.00063, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM08/DwU3IW6ChVmO9xmZjjFaMA6PuwGugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD0+zyuCYa64Tk0NO1GmDBh4MM6RvyaswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 245, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCOH4REnb7GMAWyUS1aMAXSUR0BkU8m+j/ModX2UKGgGR7/rAT7EYO2BaAdLZmgIR0BkXdTvRZ2ZdX2UKGgGR0Bwn8xqO939aAdN7AFoCEdAZJkjSofjj3V9lChoBkdAYC5gqEvkBGgHTegDaAhHQGUACLMs6JZ1fZQoaAZHQHDJIQvpQk5oB009AWgIR0BlH3jjrAxjdX2UKGgGR0BhCu78Nx2jaAdN6ANoCEdAZYDznzQNTnV9lChoBkdAJbJul41P32gHS25oCEdAZYv/yXlbNnV9lChoBkdAP4sTakAPu2gHS1BoCEdAZZPSmZVn3HV9lChoBkdAcHDflIVdomgHTZEBaAhHQGW7O3+dbxF1fZQoaAZHQG+C0cGTs6doB00LAWgIR0Bl1aQzUI9ldX2UKGgGR0A2hNvwVj7RaAdLc2gIR0Bl4zGJemeldX2UKGgGR0BkNZeJHiFTaAdN6ANoCEdAZmSXMyJsPHV9lChoBkdAcNyeE7GNrGgHTWwBaAhHQGaISon8baR1fZQoaAZHQHKpMkMTewdoB01YAWgIR0BmqXx8UmD2dX2UKGgGR0ByiL225QP7aAdNfwFoCEdAZs7R1oxpL3V9lChoBkdAYoLYwqRU3mgHTegDaAhHQGcxkDyOJch1fZQoaAZHQGN78vVVghNoB03oA2gIR0BnmEehf0EpdX2UKGgGRz/p2Mju8brDaAdLdWgIR0BnpgvN/vv0dX2UKGgGR0BpQiqlxffGaAdN9QFoCEdAZ99KEFnqV3V9lChoBkdAblnufEn9emgHS/ZoCEdAZ/jDJlrdnHV9lChoBkdAbokG8mKIi2gHTakBaAhHQGgh943WFvh1fZQoaAZHQG8z4ODrZ8NoB03JAWgIR0BoTm8Empl0dX2UKGgGR0BZuo0uUUwjaAdN6ANoCEdAaLHGcWj46HV9lChoBkdAcjHaQmu1W2gHTSoCaAhHQGjpWcjJMg51fZQoaAZHQHHKXgk1MuhoB0vqaAhHQGkAGlImPYF1fZQoaAZHQHGQx20Re1NoB00OAWgIR0BpIELKFIuodX2UKGgGR0Bc3PU8V58jaAdN6ANoCEdAaYpLq2SdOXV9lChoBkfAZYAAsCkoF2gHS4FoCEdAaZbrMTviLnV9lChoBkdAbmYer+5vtWgHTbUDaAhHQGn0wQlKK511fZQoaAZHQHDDiWZ7XxxoB01bAWgIR0BqFswUQCjldX2UKGgGR0ByWZanrIHUaAdNdgFoCEdAajrRwZOzp3V9lChoBkdAV8Ti4rjHXGgHTegDaAhHQGqkQaisXBR1fZQoaAZHQCKTohY/3WZoB0tzaAhHQGqzFId2gWd1fZQoaAZHQHCACgPEsJ9oB02IAWgIR0Bq3MjVx0dSdX2UKGgGR8BhJqZYxL00aAdN8gFoCEdAaw0zF+/gznV9lChoBkdARlr3yqdYn2gHS4NoCEdAaxmQFs54nnV9lChoBkdASCb1K5Cng2gHS1toCEdAayJUIcBEKHV9lChoBkfAZ1/0q6OHWWgHS6doCEdAazKRQrMC93V9lChoBkfAaWyTcqOLi2gHTUkDaAhHQGuEFVktmL91fZQoaAZHQHDo318LKFJoB00lAWgIR0BroUB6rvLHdX2UKGgGR0BnjwPuogmraAdN6ANoCEdAbANHBk7OmnV9lChoBkdAcM+XfqHGj2gHS7doCEdAbBoxlg+hXnV9lChoBkdAcVzB7NSqEWgHTRgDaAhHQGxwKc3EQ5F1fZQoaAZHQHE78g6ltTFoB03TAWgIR0BsnqxeLNwBdX2UKGgGR0By8V8IAwPAaAdNjQFoCEdAbMSzabnX/nV9lChoBkdAbhkVBUrCnGgHTQUBaAhHQGzd8+iaiK11fZQoaAZHQCTQV45cTrVoB0uKaAhHQGzrYwyqMm51fZQoaAZHQHHro4+8oQZoB00hAWgIR0BtCAQWepXIdX2UKGgGR0Bxhe/8EV32aAdNugFoCEdAbTN/J/5Ly3V9lChoBkdAcWDcU/OdG2gHTUwBaAhHQG1WVc2R7qp1fZQoaAZHQHItC/bj94xoB03YAWgIR0BtiBwsGxD9dX2UKGgGR0BySGIbfgrIaAdNTwFoCEdAbbHEkSmIkHV9lChoBkdAXg/Iq9XcQGgHTegDaAhHQG4UFEJBw/B1fZQoaAZHQHFaeVopQUJoB00dAmgIR0BuSUYEW69TdX2UKGgGR0BxdrS8an76aAdNWwFoCEdAbmqTnJT2nXV9lChoBkdAYFzowmE5AGgHTegDaAhHQG7NReTmnwZ1fZQoaAZHQHLFEpd8iOhoB00kAWgIR0Bu6ozJp35fdX2UKGgGR0BwZrSb6P8yaAdNDQNoCEdAb0ek8A7xNXV9lChoBkdAcCpYBeXzDmgHTYQCaAhHQG+GgLRa5gB1fZQoaAZHQHFIKAvtdAxoB01DAWgIR0BvphGSZBszdX2UKGgGR0BunTAeq7yyaAdNowJoCEdAb+gyWRigCnV9lChoBkdAcRWM5wOvuGgHS+9oCEdAb//NwiqyW3V9lChoBkdAcrq+BYmsvWgHS+FoCEdAcAu6asp5NXV9lChoBkdAUCCDbrTpgWgHTegDaAhHQHA/cMI/qxF1fZQoaAZHQGXiMhgVoHtoB03oA2gIR0Bwdr6BRQ7+dX2UKGgGR0Bypdc/t6X0aAdNxAFoCEdAcI0sfJV81HV9lChoBkfAQBh3HJcPfGgHS2NoCEdAcJIPJaJQ+HV9lChoBkdAct9J8v24/mgHTYoCaAhHQHCyw2VE/jd1fZQoaAZHQHCBzxPO6d1oB00TAWgIR0BwwJ24d6sydX2UKGgGR0Bs7WS6lLvkaAdNBgFoCEdAcM2Z2IO6NHV9lChoBkdAbtnmoR7JGWgHTakCaAhHQHDu2e6I3zd1fZQoaAZHQHD8d/SYw7FoB01YAWgIR0BxAjv8ZUDMdX2UKGgGR0By3vw1BMSLaAdNPgNoCEdAcTEdeY2KmHV9lChoBkdAcECupS75EmgHTcACaAhHQHFUZr1uivh1fZQoaAZHQGcVaLwWnCRoB03oA2gIR0BxhucSXdCWdX2UKGgGR0ByITOhTOxCaAdNawFoCEdAcZmfQKKHf3V9lChoBkdAbzQxoIv8ImgHTdYCaAhHQHG/6nWJ79h1fZQoaAZHQEgy1NxlxwRoB0tYaAhHQHHFUFfReC11fZQoaAZHQHL6gvpQk5ZoB03SAWgIR0Bx4P80k4WDdX2UKGgGR0BiED8YQ8OkaAdN6ANoCEdAchQTVDrquHV9lChoBkfANb8g6ltTDWgHS1NoCEdAchgNKyv9tXV9lChoBkfAUdLqv/zasmgHSzdoCEdAchqzq8lHBnV9lChoBkdAPKhIre67NGgHS39oCEdAciDhSLqD9XV9lChoBkdAcrD29tdiUmgHTaYDaAhHQHJPT/ACW/t1fZQoaAZHQHHt2zByjpNoB0vMaAhHQHJZRR64Uex1fZQoaAZHwDOKT4cm0E5oB0teaAhHQHJdqFmFrVR1fZQoaAZHQHDHWSIP9UFoB02TAWgIR0BycUTHsC1adX2UKGgGR0BxEGglF+d9aAdNCwFoCEdAcoC5WzWwvHV9lChoBkdAcUhn9vS+g2gHS7doCEdAcoxHyVfNRnV9lChoBkdAcfA/wRXfZWgHTRIDaAhHQHK1jmOlwcZ1fZQoaAZHQGouR7qptJpoB03tAWgIR0ByzY+5e7cxdX2UKGgGR0BnIRbSqlxfaAdN6ANoCEdAcv/e9Ba9snV9lChoBkdAcl6PfKp1imgHS/RoCEdAcwvdcjZ+QXV9lChoBkdAbIy4XoC+12gHTbIBaAhHQHMhepjtoi91fZQoaAZHQF6tjY7JW/9oB03oA2gIR0BzY70EovzwdX2UKGgGR0Bus9O/L1VYaAdNeQFoCEdAc3ZIjW07bXV9lChoBkdAYrK57w8W9GgHTegDaAhHQHOnd4Vymyh1fZQoaAZHQGGGvva11GNoB03oA2gIR0Bz2Sg00m+kdX2UKGgGR0BwdZupCKJmaAdNDQJoCEdAc/LUYKpkw3V9lChoBkdAbPNj5sTFl2gHTZsBaAhHQHQJfRVp9JB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoR+uZik95OSmnXdSCS6ygbwACMA2luY5SKEctaO0s89QGSZ0M/276DyfQAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR6pNA+D4aC157BNAcTbVPhgCMA2luY5SKEP93OiQbyMr+fHXCdT24yzR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBchLSPIAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 50000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7d63eeb87640>", "add": "<function ReplayBuffer.add at 0x7d63eeb876d0>", "sample": "<function ReplayBuffer.sample at 0x7d63eeb87760>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7d63eeb877f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d63eeb88f80>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.12, "target_update_interval": 250, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
dqn-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7670f02953afcdd5d88cda2b25bad24d6517d26a9c62c05aed96620d2c568f1
|
3 |
+
size 1133084
|
dqn-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
dqn-LunarLander-v2/data
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7d63eeb9f1c0>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7d63eeb9f250>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7d63eeb9f2e0>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7d63eeb9f370>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7d63eeb9f400>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7d63eeb9f490>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7d63eeb9f520>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d63eebb5f00>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"num_timesteps": 100000,
|
26 |
+
"_total_timesteps": 100000.0,
|
27 |
+
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": null,
|
29 |
+
"action_noise": null,
|
30 |
+
"start_time": 1712379432009097840,
|
31 |
+
"learning_rate": 0.00063,
|
32 |
+
"tensorboard_log": null,
|
33 |
+
"_last_obs": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM08/DwU3IW6ChVmO9xmZjjFaMA6PuwGugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAD0+zyuCYa64Tk0NO1GmDBh4MM6RvyaswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_episode_num": 245,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": 0.0,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCOH4REnb7GMAWyUS1aMAXSUR0BkU8m+j/ModX2UKGgGR7/rAT7EYO2BaAdLZmgIR0BkXdTvRZ2ZdX2UKGgGR0Bwn8xqO939aAdN7AFoCEdAZJkjSofjj3V9lChoBkdAYC5gqEvkBGgHTegDaAhHQGUACLMs6JZ1fZQoaAZHQHDJIQvpQk5oB009AWgIR0BlH3jjrAxjdX2UKGgGR0BhCu78Nx2jaAdN6ANoCEdAZYDznzQNTnV9lChoBkdAJbJul41P32gHS25oCEdAZYv/yXlbNnV9lChoBkdAP4sTakAPu2gHS1BoCEdAZZPSmZVn3HV9lChoBkdAcHDflIVdomgHTZEBaAhHQGW7O3+dbxF1fZQoaAZHQG+C0cGTs6doB00LAWgIR0Bl1aQzUI9ldX2UKGgGR0A2hNvwVj7RaAdLc2gIR0Bl4zGJemeldX2UKGgGR0BkNZeJHiFTaAdN6ANoCEdAZmSXMyJsPHV9lChoBkdAcNyeE7GNrGgHTWwBaAhHQGaISon8baR1fZQoaAZHQHKpMkMTewdoB01YAWgIR0BmqXx8UmD2dX2UKGgGR0ByiL225QP7aAdNfwFoCEdAZs7R1oxpL3V9lChoBkdAYoLYwqRU3mgHTegDaAhHQGcxkDyOJch1fZQoaAZHQGN78vVVghNoB03oA2gIR0BnmEehf0EpdX2UKGgGRz/p2Mju8brDaAdLdWgIR0BnpgvN/vv0dX2UKGgGR0BpQiqlxffGaAdN9QFoCEdAZ99KEFnqV3V9lChoBkdAblnufEn9emgHS/ZoCEdAZ/jDJlrdnHV9lChoBkdAbokG8mKIi2gHTakBaAhHQGgh943WFvh1fZQoaAZHQG8z4ODrZ8NoB03JAWgIR0BoTm8Empl0dX2UKGgGR0BZuo0uUUwjaAdN6ANoCEdAaLHGcWj46HV9lChoBkdAcjHaQmu1W2gHTSoCaAhHQGjpWcjJMg51fZQoaAZHQHHKXgk1MuhoB0vqaAhHQGkAGlImPYF1fZQoaAZHQHGQx20Re1NoB00OAWgIR0BpIELKFIuodX2UKGgGR0Bc3PU8V58jaAdN6ANoCEdAaYpLq2SdOXV9lChoBkfAZYAAsCkoF2gHS4FoCEdAaZbrMTviLnV9lChoBkdAbmYer+5vtWgHTbUDaAhHQGn0wQlKK511fZQoaAZHQHDDiWZ7XxxoB01bAWgIR0BqFswUQCjldX2UKGgGR0ByWZanrIHUaAdNdgFoCEdAajrRwZOzp3V9lChoBkdAV8Ti4rjHXGgHTegDaAhHQGqkQaisXBR1fZQoaAZHQCKTohY/3WZoB0tzaAhHQGqzFId2gWd1fZQoaAZHQHCACgPEsJ9oB02IAWgIR0Bq3MjVx0dSdX2UKGgGR8BhJqZYxL00aAdN8gFoCEdAaw0zF+/gznV9lChoBkdARlr3yqdYn2gHS4NoCEdAaxmQFs54nnV9lChoBkdASCb1K5Cng2gHS1toCEdAayJUIcBEKHV9lChoBkfAZ1/0q6OHWWgHS6doCEdAazKRQrMC93V9lChoBkfAaWyTcqOLi2gHTUkDaAhHQGuEFVktmL91fZQoaAZHQHDo318LKFJoB00lAWgIR0BroUB6rvLHdX2UKGgGR0BnjwPuogmraAdN6ANoCEdAbANHBk7OmnV9lChoBkdAcM+XfqHGj2gHS7doCEdAbBoxlg+hXnV9lChoBkdAcVzB7NSqEWgHTRgDaAhHQGxwKc3EQ5F1fZQoaAZHQHE78g6ltTFoB03TAWgIR0BsnqxeLNwBdX2UKGgGR0By8V8IAwPAaAdNjQFoCEdAbMSzabnX/nV9lChoBkdAbhkVBUrCnGgHTQUBaAhHQGzd8+iaiK11fZQoaAZHQCTQV45cTrVoB0uKaAhHQGzrYwyqMm51fZQoaAZHQHHro4+8oQZoB00hAWgIR0BtCAQWepXIdX2UKGgGR0Bxhe/8EV32aAdNugFoCEdAbTN/J/5Ly3V9lChoBkdAcWDcU/OdG2gHTUwBaAhHQG1WVc2R7qp1fZQoaAZHQHItC/bj94xoB03YAWgIR0BtiBwsGxD9dX2UKGgGR0BySGIbfgrIaAdNTwFoCEdAbbHEkSmIkHV9lChoBkdAXg/Iq9XcQGgHTegDaAhHQG4UFEJBw/B1fZQoaAZHQHFaeVopQUJoB00dAmgIR0BuSUYEW69TdX2UKGgGR0BxdrS8an76aAdNWwFoCEdAbmqTnJT2nXV9lChoBkdAYFzowmE5AGgHTegDaAhHQG7NReTmnwZ1fZQoaAZHQHLFEpd8iOhoB00kAWgIR0Bu6ozJp35fdX2UKGgGR0BwZrSb6P8yaAdNDQNoCEdAb0ek8A7xNXV9lChoBkdAcCpYBeXzDmgHTYQCaAhHQG+GgLRa5gB1fZQoaAZHQHFIKAvtdAxoB01DAWgIR0BvphGSZBszdX2UKGgGR0BunTAeq7yyaAdNowJoCEdAb+gyWRigCnV9lChoBkdAcRWM5wOvuGgHS+9oCEdAb//NwiqyW3V9lChoBkdAcrq+BYmsvWgHS+FoCEdAcAu6asp5NXV9lChoBkdAUCCDbrTpgWgHTegDaAhHQHA/cMI/qxF1fZQoaAZHQGXiMhgVoHtoB03oA2gIR0Bwdr6BRQ7+dX2UKGgGR0Bypdc/t6X0aAdNxAFoCEdAcI0sfJV81HV9lChoBkfAQBh3HJcPfGgHS2NoCEdAcJIPJaJQ+HV9lChoBkdAct9J8v24/mgHTYoCaAhHQHCyw2VE/jd1fZQoaAZHQHCBzxPO6d1oB00TAWgIR0BwwJ24d6sydX2UKGgGR0Bs7WS6lLvkaAdNBgFoCEdAcM2Z2IO6NHV9lChoBkdAbtnmoR7JGWgHTakCaAhHQHDu2e6I3zd1fZQoaAZHQHD8d/SYw7FoB01YAWgIR0BxAjv8ZUDMdX2UKGgGR0By3vw1BMSLaAdNPgNoCEdAcTEdeY2KmHV9lChoBkdAcECupS75EmgHTcACaAhHQHFUZr1uivh1fZQoaAZHQGcVaLwWnCRoB03oA2gIR0BxhucSXdCWdX2UKGgGR0ByITOhTOxCaAdNawFoCEdAcZmfQKKHf3V9lChoBkdAbzQxoIv8ImgHTdYCaAhHQHG/6nWJ79h1fZQoaAZHQEgy1NxlxwRoB0tYaAhHQHHFUFfReC11fZQoaAZHQHL6gvpQk5ZoB03SAWgIR0Bx4P80k4WDdX2UKGgGR0BiED8YQ8OkaAdN6ANoCEdAchQTVDrquHV9lChoBkfANb8g6ltTDWgHS1NoCEdAchgNKyv9tXV9lChoBkfAUdLqv/zasmgHSzdoCEdAchqzq8lHBnV9lChoBkdAPKhIre67NGgHS39oCEdAciDhSLqD9XV9lChoBkdAcrD29tdiUmgHTaYDaAhHQHJPT/ACW/t1fZQoaAZHQHHt2zByjpNoB0vMaAhHQHJZRR64Uex1fZQoaAZHwDOKT4cm0E5oB0teaAhHQHJdqFmFrVR1fZQoaAZHQHDHWSIP9UFoB02TAWgIR0BycUTHsC1adX2UKGgGR0BxEGglF+d9aAdNCwFoCEdAcoC5WzWwvHV9lChoBkdAcUhn9vS+g2gHS7doCEdAcoxHyVfNRnV9lChoBkdAcfA/wRXfZWgHTRIDaAhHQHK1jmOlwcZ1fZQoaAZHQGouR7qptJpoB03tAWgIR0ByzY+5e7cxdX2UKGgGR0BnIRbSqlxfaAdN6ANoCEdAcv/e9Ba9snV9lChoBkdAcl6PfKp1imgHS/RoCEdAcwvdcjZ+QXV9lChoBkdAbIy4XoC+12gHTbIBaAhHQHMhepjtoi91fZQoaAZHQF6tjY7JW/9oB03oA2gIR0BzY70EovzwdX2UKGgGR0Bus9O/L1VYaAdNeQFoCEdAc3ZIjW07bXV9lChoBkdAYrK57w8W9GgHTegDaAhHQHOnd4Vymyh1fZQoaAZHQGGGvva11GNoB03oA2gIR0Bz2Sg00m+kdX2UKGgGR0BwdZupCKJmaAdNDQJoCEdAc/LUYKpkw3V9lChoBkdAbPNj5sTFl2gHTZsBaAhHQHQJfRVp9JB1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 100000,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoR+uZik95OSmnXdSCS6ygbwACMA2luY5SKEctaO0s89QGSZ0M/276DyfQAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
62 |
+
"dtype": "float32",
|
63 |
+
"bounded_below": "[ True True True True True True True True]",
|
64 |
+
"bounded_above": "[ True True True True True True True True]",
|
65 |
+
"_shape": [
|
66 |
+
8
|
67 |
+
],
|
68 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
69 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
70 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
71 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
72 |
+
"_np_random": "Generator(PCG64)"
|
73 |
+
},
|
74 |
+
"action_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
+
":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR6pNA+D4aC157BNAcTbVPhgCMA2luY5SKEP93OiQbyMr+fHXCdT24yzR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBchLSPIAdWJ1Yi4=",
|
77 |
+
"n": "4",
|
78 |
+
"start": "0",
|
79 |
+
"_shape": [],
|
80 |
+
"dtype": "int64",
|
81 |
+
"_np_random": "Generator(PCG64)"
|
82 |
+
},
|
83 |
+
"n_envs": 1,
|
84 |
+
"buffer_size": 50000,
|
85 |
+
"batch_size": 128,
|
86 |
+
"learning_starts": 0,
|
87 |
+
"tau": 1.0,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": -1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7d63eeb87640>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7d63eeb876d0>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7d63eeb87760>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7d63eeb877f0>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d63eeb88f80>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.1,
|
111 |
+
"exploration_fraction": 0.12,
|
112 |
+
"target_update_interval": 250,
|
113 |
+
"_n_calls": 100000,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.1,
|
116 |
+
"lr_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
119 |
+
},
|
120 |
+
"batch_norm_stats": [],
|
121 |
+
"batch_norm_stats_target": [],
|
122 |
+
"exploration_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
125 |
+
}
|
126 |
+
}
|
dqn-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cf20f8d3c753307a1459971ddb39ceef5970bed0fa93da0a9f9cf28007deb6d
|
3 |
+
size 558368
|
dqn-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42710b3b7f41e129c5d0650fea8b409bd3db8ac2817343164f4586e4c81754f2
|
3 |
+
size 557490
|
dqn-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
dqn-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 129.20216538953858, "std_reward": 166.82987613460423, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-06T05:08:47.639465"}
|