update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: bert-base-uncased-finetuned-vi-infovqa
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# bert-base-uncased-finetuned-vi-infovqa
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 13.9895
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0001
|
37 |
+
- train_batch_size: 4
|
38 |
+
- eval_batch_size: 4
|
39 |
+
- seed: 250500
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 50
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
48 |
+
| 4.3635 | 1.07 | 500 | 4.5286 |
|
49 |
+
| 3.8961 | 2.13 | 1000 | 4.4055 |
|
50 |
+
| 3.3012 | 3.2 | 1500 | 5.0429 |
|
51 |
+
| 2.5998 | 4.26 | 2000 | 5.4774 |
|
52 |
+
| 1.8851 | 5.33 | 2500 | 6.4376 |
|
53 |
+
| 1.3968 | 6.4 | 3000 | 6.8778 |
|
54 |
+
| 1.1244 | 7.46 | 3500 | 7.1008 |
|
55 |
+
| 0.8851 | 8.53 | 4000 | 6.8303 |
|
56 |
+
| 0.7654 | 9.59 | 4500 | 8.6628 |
|
57 |
+
| 0.6895 | 10.66 | 5000 | 6.0228 |
|
58 |
+
| 0.5989 | 11.73 | 5500 | 8.8191 |
|
59 |
+
| 0.6033 | 12.79 | 6000 | 9.7359 |
|
60 |
+
| 0.6005 | 13.86 | 6500 | 7.6668 |
|
61 |
+
| 0.522 | 14.93 | 7000 | 8.7185 |
|
62 |
+
| 0.464 | 15.99 | 7500 | 10.1035 |
|
63 |
+
| 0.4112 | 17.06 | 8000 | 8.7928 |
|
64 |
+
| 0.3501 | 18.12 | 8500 | 9.9157 |
|
65 |
+
| 0.3401 | 19.19 | 9000 | 12.1013 |
|
66 |
+
| 0.3233 | 20.26 | 9500 | 10.2730 |
|
67 |
+
| 0.2513 | 21.32 | 10000 | 8.4839 |
|
68 |
+
| 0.2319 | 22.39 | 10500 | 10.9367 |
|
69 |
+
| 0.2269 | 23.45 | 11000 | 9.6821 |
|
70 |
+
| 0.237 | 24.52 | 11500 | 10.2357 |
|
71 |
+
| 0.1868 | 25.59 | 12000 | 9.8762 |
|
72 |
+
| 0.1655 | 26.65 | 12500 | 10.7398 |
|
73 |
+
| 0.1561 | 27.72 | 13000 | 11.8157 |
|
74 |
+
| 0.1714 | 28.78 | 13500 | 10.8686 |
|
75 |
+
| 0.1098 | 29.85 | 14000 | 13.1537 |
|
76 |
+
| 0.1222 | 30.92 | 14500 | 14.5398 |
|
77 |
+
| 0.1325 | 31.98 | 15000 | 12.6095 |
|
78 |
+
| 0.1088 | 33.05 | 15500 | 12.0747 |
|
79 |
+
| 0.0855 | 34.12 | 16000 | 12.4450 |
|
80 |
+
| 0.0832 | 35.18 | 16500 | 12.9436 |
|
81 |
+
| 0.0687 | 36.25 | 17000 | 12.5902 |
|
82 |
+
| 0.0804 | 37.31 | 17500 | 11.9873 |
|
83 |
+
| 0.0427 | 38.38 | 18000 | 12.6357 |
|
84 |
+
| 0.0529 | 39.45 | 18500 | 11.5851 |
|
85 |
+
| 0.0478 | 40.51 | 19000 | 13.1796 |
|
86 |
+
| 0.0513 | 41.58 | 19500 | 13.8597 |
|
87 |
+
| 0.0449 | 42.64 | 20000 | 13.6467 |
|
88 |
+
| 0.0327 | 43.71 | 20500 | 13.0391 |
|
89 |
+
| 0.0329 | 44.78 | 21000 | 13.1984 |
|
90 |
+
| 0.0266 | 45.84 | 21500 | 13.9690 |
|
91 |
+
| 0.0301 | 46.91 | 22000 | 13.9516 |
|
92 |
+
| 0.0193 | 47.97 | 22500 | 13.9104 |
|
93 |
+
| 0.0273 | 49.04 | 23000 | 13.9895 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.14.1
|
99 |
+
- Pytorch 1.10.0+cu111
|
100 |
+
- Datasets 1.16.1
|
101 |
+
- Tokenizers 0.10.3
|