tiendung commited on
Commit
ca0271d
1 Parent(s): 3117041

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-reranker-v2.5-gemma2-lightweight",
3
+ "architectures": [
4
+ "CostWiseGemmaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": 50.0,
9
+ "auto_map": {
10
+ "AutoConfig": "BAAI/bge-reranker-v2.5-gemma2-lightweight--gemma_config.CostWiseGemmaConfig",
11
+ "AutoModel": "BAAI/bge-reranker-v2.5-gemma2-lightweight--gemma_model.CostWiseGemmaModel",
12
+ "AutoModelForCausalLM": "BAAI/bge-reranker-v2.5-gemma2-lightweight--gemma_model.CostWiseGemmaForCausalLM"
13
+ },
14
+ "bos_token_id": 2,
15
+ "cache_implementation": "hybrid",
16
+ "eos_token_id": 1,
17
+ "final_logit_softcapping": 30.0,
18
+ "head_dim": 256,
19
+ "hidden_act": "gelu_pytorch_tanh",
20
+ "hidden_activation": "gelu_pytorch_tanh",
21
+ "hidden_size": 3584,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 14336,
24
+ "layer_sep": 1,
25
+ "layer_wise": true,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "cost_wise_gemma",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 42,
30
+ "num_key_value_heads": 8,
31
+ "pad_token_id": 0,
32
+ "query_pre_attn_scalar": 256,
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_theta": 10000.0,
35
+ "sliding_window": 4096,
36
+ "sliding_window_size": 4096,
37
+ "start_layer": 8,
38
+ "torch_dtype": "float16",
39
+ "transformers_version": "4.43.4",
40
+ "use_cache": true,
41
+ "vocab_size": 256000
42
+ }
gemma_config.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from <path_to_diff_file.py>.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the diff. If any change should be done, please apply the change to the
5
+ # diff.py file directly.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+
23
+
24
+ from transformers.models.gemma2.configuration_gemma2 import Gemma2Config
25
+
26
+ class CostWiseGemmaConfig(Gemma2Config):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the Gemma-7B.
31
+ e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+ Args:
35
+ start_layer (`int`, *optional*, defaults to 28):
36
+ The start layer to output score.
37
+ layer_sep (`int`, *optional*, defaults to 28):
38
+ The sep layer from the start layer to output score.
39
+ layer_wise (`bool`, *optional*, defaults to `False`):
40
+ Whether or not the model should be layerwise.
41
+ ```python
42
+ >>> from transformers import Gemma2Model, Gemma2Config
43
+ >>> # Initializing a Gemma2 gemma2-9b style configuration
44
+ >>> configuration = Gemma2Config()
45
+ >>> # Initializing a model from the gemma2-9b style configuration
46
+ >>> model = Gemma2Model(configuration)
47
+ >>> # Accessing the model configuration
48
+ >>> configuration = model.config
49
+ ```"""
50
+
51
+ model_type = "cost_wise_gemma"
52
+ keys_to_ignore_at_inference = ["past_key_values"]
53
+
54
+ def __init__(
55
+ self,
56
+ start_layer: int = 28,
57
+ layer_sep: int = 28,
58
+ layer_wise: bool = False,
59
+ **kwargs,
60
+ ):
61
+ self.start_layer = start_layer
62
+ self.layer_sep = layer_sep
63
+ self.layer_wise = layer_wise
64
+
65
+ super().__init__(
66
+ **kwargs,
67
+ )
gemma_model.py ADDED
@@ -0,0 +1,751 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from <path_to_diff_file.py>.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the diff. If any change should be done, please apply the change to the
5
+ # diff.py file directly.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
9
+ #
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ from dataclasses import dataclass
23
+
24
+ import math
25
+ from typing import List, Optional, Tuple, Union
26
+
27
+ import inspect
28
+ import torch
29
+ import torch.nn.functional as F
30
+ import torch.utils.checkpoint
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
36
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
37
+ from transformers.modeling_outputs import (
38
+ BaseModelOutputWithPast,
39
+ CausalLMOutputWithPast,
40
+ SequenceClassifierOutputWithPast,
41
+ TokenClassifierOutput,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
45
+ from transformers.utils import (
46
+ add_start_docstrings,
47
+ add_start_docstrings_to_model_forward,
48
+ is_flash_attn_2_available,
49
+ is_flash_attn_greater_or_equal_2_10,
50
+ logging,
51
+ replace_return_docstrings,
52
+ ModelOutput,
53
+ )
54
+ from .gemma_config import CostWiseGemmaConfig
55
+ from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb
56
+ from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING
57
+ from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
58
+
59
+ if is_flash_attn_2_available():
60
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
61
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
62
+
63
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
64
+
65
+
66
+ logger = logging.get_logger(__name__)
67
+
68
+
69
+ def _get_unpad_data(attention_mask):
70
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
71
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
72
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
73
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
74
+ return (
75
+ indices,
76
+ cu_seqlens,
77
+ max_seqlen_in_batch,
78
+ )
79
+
80
+ @add_start_docstrings(
81
+ "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
82
+ GEMMA2_START_DOCSTRING,
83
+ )
84
+ class CostWiseGemma2PreTrainedModel(PreTrainedModel):
85
+ config_class = CostWiseGemmaConfig
86
+ base_model_prefix = "model"
87
+ supports_gradient_checkpointing = True
88
+ _no_split_modules = ["Gemma2DecoderLayer"]
89
+ _skip_keys_device_placement = ["past_key_values"]
90
+ _supports_flash_attn_2 = True
91
+ _supports_sdpa = True
92
+ _supports_cache_class = False
93
+ _supports_quantized_cache = False
94
+ _supports_static_cache = True
95
+ _is_stateful = True
96
+
97
+ def _init_weights(self, module):
98
+ std = self.config.initializer_range
99
+ if isinstance(module, nn.Linear):
100
+ module.weight.data.normal_(mean=0.0, std=std)
101
+ if module.bias is not None:
102
+ module.bias.data.zero_()
103
+ elif isinstance(module, nn.Embedding):
104
+ module.weight.data.normal_(mean=0.0, std=std)
105
+ if module.padding_idx is not None:
106
+ module.weight.data[module.padding_idx].zero_()
107
+
108
+ GEMMA2_ATTENTION_CLASSES = {
109
+ "eager": Gemma2Attention,
110
+ "flash_attention_2": Gemma2FlashAttention2,
111
+ "sdpa": Gemma2SdpaAttention,
112
+ }
113
+
114
+
115
+ _CONFIG_FOR_DOC = "CostWiseGemmaConfig"
116
+
117
+ @dataclass
118
+ class CostWiseModelOutputWithPast(ModelOutput):
119
+ last_hidden_state: torch.FloatTensor = None
120
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
121
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
122
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
123
+ attention_masks: Optional[Tuple[torch.FloatTensor]] = None
124
+
125
+ @dataclass
126
+ class CostWiseCausalLMOutputWithPast(ModelOutput):
127
+ loss: Optional[torch.FloatTensor] = None
128
+ logits: torch.FloatTensor = None
129
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
130
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
131
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
132
+ attention_masks: Optional[Tuple[torch.FloatTensor]] = None
133
+
134
+ def token_compress(compress_ratio,
135
+ hidden_states,
136
+ attention_mask,
137
+ query_lengths,
138
+ prompt_lengths):
139
+ """
140
+ compress_ratio: int
141
+ hidden_states: (b, s, h)
142
+ attention_mask: (b, s)
143
+ query_lengths: (b)
144
+ prompt_lengths: (b)
145
+ """
146
+ # get some specific parameters
147
+ passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths (b)
148
+ retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained (b)
149
+ final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress (b)
150
+ max_passage_length = torch.max(passage_lengths) # the max passage lengths (1)
151
+ max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress (1)
152
+ # make new hidden states and new attention masks
153
+ new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths,
154
+ hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) # (b, s', h)
155
+ new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) # (b, s')
156
+ # get new attention mask
157
+ mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None]
158
+ new_attention_mask[mask_attention_index] = 0
159
+ # get new hidden states
160
+ # add query into new hidden states
161
+ query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
162
+ mask_query_index = query_index < query_lengths[:, None]
163
+ new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index]
164
+ # add prompt into new hidden states
165
+ # get the index of the prompt in new hidden states
166
+ new_prompt_start_length = query_lengths + retain_passage_lengths
167
+ new_prompt_end_length = new_prompt_start_length + prompt_lengths
168
+ new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
169
+ new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None]
170
+ new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None]
171
+ new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end
172
+ # get the index of the prompt in hidden states
173
+ raw_prompt_start_length = query_lengths + passage_lengths
174
+ raw_prompt_end_length = raw_prompt_start_length + prompt_lengths
175
+ raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
176
+ raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None]
177
+ raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None]
178
+ raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end
179
+ # replace the prompt hidden states
180
+ new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index]
181
+ # 以上均没问题
182
+
183
+ # print(new_hidden_states.view(len(new_hidden_states), -1))
184
+ # print(new_attention_mask)
185
+
186
+ # get the index of the passage in new hidden states
187
+ new_passage_start_length = query_lengths
188
+ new_passage_end_length = new_passage_start_length + retain_passage_lengths
189
+ new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
190
+ new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None]
191
+ new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None]
192
+ new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end
193
+ # print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths)
194
+ # add passage into new hidden states
195
+ # get mask hidden states
196
+ psg_start_length = query_lengths
197
+ psg_end_length = query_lengths + passage_lengths
198
+ psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
199
+ mask_psg_index_start = psg_index >= psg_start_length[:, None]
200
+ mask_psg_index_end = psg_index < psg_end_length[:, None]
201
+ mask_psg_index = mask_psg_index_start & mask_psg_index_end
202
+
203
+ hidden_states = hidden_states * mask_psg_index.unsqueeze(-1)
204
+ passage_hidden_states = torch.zeros((hidden_states.shape[0],
205
+ (max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio,
206
+ hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
207
+ passage_end_length = passage_lengths
208
+ passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length
209
+ mask_passage_index = passage_index < passage_end_length[:, None]
210
+
211
+ raw_passage_end_length = query_lengths + passage_lengths
212
+ raw_passage_start_length = query_lengths
213
+ raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
214
+ raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None]
215
+ raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None]
216
+ raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end
217
+ passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index]
218
+
219
+ passage_weights = torch.zeros((hidden_states.shape[0],
220
+ (max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio)
221
+ , dtype=hidden_states.dtype).to(hidden_states.device)
222
+ passage_weights[mask_passage_index] = 1
223
+ passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio)
224
+ passage_weights = passage_weights / torch.sum(passage_weights, dim=-1
225
+ ).view(passage_weights.shape[0], -1, 1)
226
+ passage_weights = passage_weights.view(passage_weights.shape[0], -1)
227
+ # passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights)
228
+ passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1)
229
+ passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio,
230
+ passage_hidden_states.shape[-1])
231
+ passage_hidden_states = torch.sum(passage_hidden_states, dim=2)
232
+ passage_end_length = retain_passage_lengths
233
+ passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
234
+ mask_passage_index = passage_index < passage_end_length[:, None]
235
+ new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index]
236
+
237
+ return new_hidden_states, new_attention_mask
238
+
239
+ @add_start_docstrings(
240
+ "The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
241
+ GEMMA2_START_DOCSTRING,
242
+ )
243
+ class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel):
244
+ """
245
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
246
+
247
+ Args:
248
+ config: GemmaConfig
249
+ """
250
+
251
+ def __init__(self, config: CostWiseGemmaConfig):
252
+ super().__init__(config)
253
+ self.padding_idx = config.pad_token_id
254
+ self.vocab_size = config.vocab_size
255
+
256
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
257
+ self.layers = nn.ModuleList(
258
+ [Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
259
+ )
260
+ self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
261
+ self.gradient_checkpointing = False
262
+
263
+ # Initialize weights and apply final processing
264
+ self.post_init()
265
+
266
+ def get_input_embeddings(self):
267
+ return self.embed_tokens
268
+
269
+ def set_input_embeddings(self, value):
270
+ self.embed_tokens = value
271
+
272
+ @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
273
+ def forward(
274
+ self,
275
+ input_ids: torch.LongTensor = None,
276
+ attention_mask: Optional[torch.Tensor] = None,
277
+ position_ids: Optional[torch.LongTensor] = None,
278
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
279
+ inputs_embeds: Optional[torch.FloatTensor] = None,
280
+ use_cache: Optional[bool] = None,
281
+ output_attentions: Optional[bool] = None,
282
+ output_hidden_states: Optional[bool] = None,
283
+ return_dict: Optional[bool] = None,
284
+ cache_position: Optional[torch.LongTensor] = None,
285
+ compress_layer: Optional[int] = None,
286
+ compress_ratio: Optional[int] = None,
287
+ cutoff_layers: Optional[List[int]] = None,
288
+ query_lengths: Optional[int] = None,
289
+ prompt_lengths: Optional[int] = None,
290
+ ) -> Union[Tuple, CostWiseModelOutputWithPast]:
291
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
292
+
293
+ compress_ratio = None if compress_ratio == 1 else compress_ratio
294
+
295
+ output_hidden_states = (
296
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
297
+ )
298
+ if self.config.layer_wise:
299
+ output_hidden_states = True
300
+
301
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
302
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
303
+
304
+ if (input_ids is None) ^ (inputs_embeds is not None):
305
+ raise ValueError(
306
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
307
+ )
308
+
309
+ if self.gradient_checkpointing and self.training and use_cache:
310
+ logger.warning_once(
311
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
312
+ )
313
+ use_cache = False
314
+
315
+ if compress_layer is not None and compress_ratio is not None:
316
+ logger.warning_once(
317
+ "`use_cache=True` is incompatible with reranker. Setting `use_cache=False`."
318
+ )
319
+ use_cache = False
320
+
321
+ if inputs_embeds is None:
322
+ inputs_embeds = self.embed_tokens(input_ids)
323
+
324
+ if cache_position is None:
325
+ cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
326
+
327
+ if position_ids is None:
328
+ position_ids = cache_position.unsqueeze(0)
329
+
330
+ causal_mask = self._update_causal_mask(
331
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
332
+ )
333
+
334
+ # embed positions
335
+ hidden_states = inputs_embeds
336
+
337
+ # normalized
338
+ # Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
339
+ # See https://github.com/huggingface/transformers/pull/29402
340
+ normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
341
+ hidden_states = hidden_states * normalizer
342
+
343
+ # decoder layers
344
+ all_hidden_states = () if output_hidden_states else None
345
+ all_attention_masks = ()
346
+ all_self_attns = () if output_attentions else None
347
+ next_decoder_cache = None
348
+
349
+ is_padding_left = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and (
350
+ torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1])
351
+ query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths
352
+ prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths
353
+ if not isinstance(query_lengths, torch.Tensor):
354
+ query_lengths = torch.tensor(query_lengths, device=hidden_states.device)
355
+ if not isinstance(prompt_lengths, torch.Tensor):
356
+ prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device)
357
+
358
+ if cutoff_layers is None:
359
+ max_layer = self.config.num_hidden_layers
360
+ cutoff_layers = [max_layer]
361
+ if isinstance(cutoff_layers, int):
362
+ max_layer = cutoff_layers
363
+ cutoff_layers = [cutoff_layers]
364
+ else:
365
+ max_layer = max(cutoff_layers)
366
+
367
+ for idx, decoder_layer in enumerate(self.layers):
368
+ if self.config.layer_wise:
369
+ if idx in cutoff_layers and output_hidden_states:
370
+ all_hidden_states += (self.norm(hidden_states),)
371
+ all_attention_masks += (attention_mask,)
372
+ if idx == max_layer:
373
+ break
374
+ elif output_hidden_states:
375
+ all_hidden_states += (hidden_states,)
376
+
377
+ if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0:
378
+ if is_padding_left:
379
+ raise ValueError('You must use right padding...')
380
+ hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask,
381
+ query_lengths, prompt_lengths)
382
+ seq_length = hidden_states.shape[1]
383
+ cache_position = torch.arange(0, seq_length, device=hidden_states.device)
384
+ position_ids = cache_position.unsqueeze(0)
385
+ causal_mask = self._update_causal_mask(
386
+ attention_mask, hidden_states, cache_position, past_key_values, output_attentions
387
+ )
388
+
389
+ if self.gradient_checkpointing and self.training:
390
+ layer_outputs = self._gradient_checkpointing_func(
391
+ decoder_layer.__call__,
392
+ hidden_states,
393
+ causal_mask,
394
+ position_ids,
395
+ past_key_values,
396
+ output_attentions,
397
+ use_cache,
398
+ cache_position,
399
+ )
400
+ else:
401
+ layer_outputs = decoder_layer(
402
+ hidden_states,
403
+ attention_mask=causal_mask,
404
+ position_ids=position_ids,
405
+ past_key_value=past_key_values,
406
+ output_attentions=output_attentions,
407
+ use_cache=use_cache,
408
+ cache_position=cache_position,
409
+ )
410
+
411
+ hidden_states = layer_outputs[0]
412
+
413
+ if output_attentions:
414
+ all_self_attns += (layer_outputs[1],)
415
+
416
+ hidden_states = self.norm(hidden_states)
417
+
418
+ # add hidden states from the last decoder layer
419
+ if not self.config.layer_wise:
420
+ if output_hidden_states:
421
+ all_hidden_states += (hidden_states,)
422
+ all_attention_masks += (attention_mask,)
423
+ else:
424
+ if output_hidden_states and self.config.num_hidden_layers == max_layer:
425
+ all_hidden_states += (hidden_states,)
426
+ all_attention_masks += (attention_mask,)
427
+
428
+ next_cache = next_decoder_cache if use_cache else None
429
+
430
+ if not return_dict:
431
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
432
+ return CostWiseModelOutputWithPast(
433
+ last_hidden_state=hidden_states,
434
+ past_key_values=next_cache,
435
+ hidden_states=all_hidden_states,
436
+ attentions=all_self_attns,
437
+ attention_masks=all_attention_masks
438
+ )
439
+
440
+ def _update_causal_mask(
441
+ self,
442
+ attention_mask: torch.Tensor,
443
+ input_tensor: torch.Tensor,
444
+ cache_position: torch.Tensor,
445
+ past_key_values: Cache,
446
+ output_attentions: bool,
447
+ ):
448
+ if self.config._attn_implementation == "flash_attention_2":
449
+ if attention_mask is not None and 0.0 in attention_mask:
450
+ return attention_mask
451
+ return None
452
+
453
+ dtype, device = input_tensor.dtype, input_tensor.device
454
+ min_dtype = torch.finfo(dtype).min
455
+ sequence_length = input_tensor.shape[1]
456
+ if past_key_values is not None:
457
+ target_length = past_key_values.get_max_length()
458
+ else:
459
+ target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
460
+
461
+ if attention_mask is not None and attention_mask.dim() == 4:
462
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
463
+ if attention_mask.max() != 0:
464
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
465
+ causal_mask = attention_mask
466
+ else:
467
+ causal_mask = torch.full(
468
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
469
+ )
470
+ if sequence_length != 1:
471
+ causal_mask = torch.triu(causal_mask, diagonal=1)
472
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
473
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
474
+ if attention_mask is not None:
475
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
476
+ mask_length = attention_mask.shape[-1]
477
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
478
+ padding_mask = padding_mask == 0
479
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
480
+ padding_mask, min_dtype
481
+ )
482
+ return causal_mask
483
+
484
+
485
+ class CostWiseHead(nn.Module):
486
+ """Head for sentence-level classification tasks."""
487
+
488
+ def __init__(self, input_size, output_size):
489
+ super().__init__()
490
+ self.linear_head = nn.Linear(input_size, output_size, bias=False)
491
+
492
+ def forward(self, **kwargs):
493
+ return self.linear_head(**kwargs)
494
+
495
+
496
+ class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel):
497
+ _tied_weights_keys = ["lm_head.weight"]
498
+
499
+ def __init__(self, config: CostWiseGemmaConfig):
500
+ super().__init__(config)
501
+ self.model = CostWiseGemmaModel(config)
502
+ self.vocab_size = config.vocab_size
503
+
504
+ if not config.layer_wise:
505
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
506
+ else:
507
+ self.lm_head = nn.ModuleList(
508
+ [CostWiseHead(config.hidden_size, 1) for _ in range(
509
+ config.start_layer, config.num_hidden_layers + 1, config.layer_sep
510
+ )]
511
+ )
512
+
513
+ # Initialize weights and apply final processing
514
+ self.post_init()
515
+
516
+ def get_input_embeddings(self):
517
+ return self.model.embed_tokens
518
+
519
+ def set_input_embeddings(self, value):
520
+ self.model.embed_tokens = value
521
+
522
+ def get_output_embeddings(self):
523
+ return self.lm_head
524
+
525
+ def set_output_embeddings(self, new_embeddings):
526
+ self.lm_head = new_embeddings
527
+
528
+ def set_decoder(self, decoder):
529
+ self.model = decoder
530
+
531
+ def get_decoder(self):
532
+ return self.model
533
+
534
+ @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
535
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
536
+ def forward(
537
+ self,
538
+ input_ids: torch.LongTensor = None,
539
+ attention_mask: Optional[torch.Tensor] = None,
540
+ position_ids: Optional[torch.LongTensor] = None,
541
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
542
+ inputs_embeds: Optional[torch.FloatTensor] = None,
543
+ labels: Optional[torch.LongTensor] = None,
544
+ use_cache: Optional[bool] = None,
545
+ output_attentions: Optional[bool] = None,
546
+ output_hidden_states: Optional[bool] = None,
547
+ return_dict: Optional[bool] = None,
548
+ cache_position: Optional[torch.LongTensor] = None,
549
+ compress_layer: Optional[int] = None,
550
+ compress_ratio: Optional[int] = None,
551
+ cutoff_layers: Optional[List[int]] = None,
552
+ query_lengths: Optional[int] = None,
553
+ prompt_lengths: Optional[int] = None,
554
+ ) -> Union[Tuple, CostWiseCausalLMOutputWithPast]:
555
+ r"""
556
+ Args:
557
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
558
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
559
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
560
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
561
+
562
+ Returns:
563
+
564
+ Example:
565
+
566
+ ```python
567
+ >>> from transformers import AutoTokenizer, GemmaForCausalLM
568
+
569
+ >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
570
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
571
+
572
+ >>> prompt = "What is your favorite condiment?"
573
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
574
+
575
+ >>> # Generate
576
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
577
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
578
+ "What is your favorite condiment?"
579
+ ```"""
580
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
581
+ output_hidden_states = (
582
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
583
+ )
584
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
585
+
586
+ if compress_ratio is not None and compress_ratio == 1:
587
+ compress_ratio = None
588
+
589
+ if self.config.layer_wise:
590
+ if cutoff_layers is None:
591
+ cutoff_layers = [self.config.num_hidden_layers]
592
+ elif isinstance(cutoff_layers, int):
593
+ cutoff_layers = [cutoff_layers]
594
+ can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep))
595
+ remove_layers = [i for i in cutoff_layers if i not in can_use_layers]
596
+ if len(remove_layers) > 0:
597
+ logger.warning_once(
598
+ f"layers {remove_layers} are incompatible with the setting. They will be removed..."
599
+ )
600
+ cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
601
+ if len(cutoff_layers) == 0:
602
+ raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]")
603
+
604
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
605
+ outputs = self.model(
606
+ input_ids=input_ids,
607
+ attention_mask=attention_mask,
608
+ position_ids=position_ids,
609
+ past_key_values=past_key_values,
610
+ inputs_embeds=inputs_embeds,
611
+ use_cache=use_cache,
612
+ output_attentions=output_attentions,
613
+ output_hidden_states=output_hidden_states,
614
+ return_dict=return_dict,
615
+ cache_position=cache_position,
616
+ compress_layer=compress_layer,
617
+ compress_ratio=compress_ratio,
618
+ query_lengths=query_lengths,
619
+ prompt_lengths=prompt_lengths,
620
+ cutoff_layers=cutoff_layers,
621
+ )
622
+
623
+ if not self.config.layer_wise:
624
+ hidden_states = outputs[0]
625
+ logits = self.lm_head(hidden_states)
626
+ if self.config.final_logit_softcapping is not None:
627
+ logits = logits / self.config.final_logit_softcapping
628
+ logits = torch.tanh(logits)
629
+ logits = logits * self.config.final_logit_softcapping
630
+ logits = logits.float()
631
+ loss = None
632
+ if labels is not None:
633
+ # Shift so that tokens < n predict n
634
+ shift_logits = logits[..., :-1, :].contiguous()
635
+ shift_labels = labels[..., 1:].contiguous()
636
+ # Flatten the tokens
637
+ loss_fct = CrossEntropyLoss()
638
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
639
+ shift_labels = shift_labels.view(-1)
640
+ # Enable model parallelism
641
+ shift_labels = shift_labels.to(shift_logits.device)
642
+ loss = loss_fct(shift_logits, shift_labels)
643
+ else:
644
+ hidden_states = outputs.hidden_states
645
+ logits = ()
646
+ for i in range(len(hidden_states)):
647
+ tmp_logits = self.lm_head[i].linear_head(hidden_states[i])
648
+ if self.config.final_logit_softcapping is not None:
649
+ tmp_logits = tmp_logits / self.config.final_logit_softcapping
650
+ tmp_logits = torch.tanh(tmp_logits)
651
+ tmp_logits = tmp_logits * self.config.final_logit_softcapping
652
+ tmp_logits = tmp_logits.float()
653
+ tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1)
654
+ logits = logits + (tmp_logits,)
655
+ loss = None
656
+
657
+ if not return_dict:
658
+ output = (logits,) + outputs[1:]
659
+ return (loss,) + output if loss is not None else output
660
+
661
+ return CostWiseCausalLMOutputWithPast(
662
+ loss=loss,
663
+ logits=logits,
664
+ past_key_values=outputs.past_key_values,
665
+ hidden_states=outputs.hidden_states,
666
+ attentions=outputs.attentions,
667
+ attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1]
668
+ )
669
+
670
+ def prepare_inputs_for_generation(
671
+ self,
672
+ input_ids,
673
+ past_key_values=None,
674
+ attention_mask=None,
675
+ inputs_embeds=None,
676
+ cache_position=None,
677
+ use_cache=True,
678
+ **kwargs,
679
+ ):
680
+ past_length = 0
681
+ if past_key_values is not None:
682
+ # Past key values are always initialized with a `Cache` object -> no need for if-else anymore
683
+ past_length = cache_position[0] if cache_position is not None else torch.tensor(0, device=input_ids.device)
684
+ max_cache_length = (
685
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
686
+ if past_key_values.get_max_length() is not None
687
+ else None
688
+ )
689
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
690
+
691
+ # Keep only the unprocessed tokens:
692
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
693
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
694
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
695
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
696
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
697
+ # input_ids based on the past_length.
698
+ elif past_length < input_ids.shape[1]:
699
+ input_ids = input_ids[:, past_length:]
700
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
701
+
702
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
703
+ if (
704
+ max_cache_length is not None
705
+ and attention_mask is not None
706
+ and cache_length + input_ids.shape[1] > max_cache_length
707
+ ):
708
+ attention_mask = attention_mask[:, -max_cache_length:]
709
+
710
+ position_ids = kwargs.get("position_ids", None)
711
+ if attention_mask is not None and position_ids is None:
712
+ # create position_ids on the fly for batch generation
713
+ position_ids = attention_mask.long().cumsum(-1) - 1
714
+ position_ids.masked_fill_(attention_mask == 0, 1)
715
+ if past_key_values:
716
+ position_ids = position_ids[:, -input_ids.shape[1] :]
717
+
718
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
719
+ if inputs_embeds is not None and past_length == 0:
720
+ model_inputs = {"inputs_embeds": inputs_embeds}
721
+ else:
722
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
723
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
724
+ # TODO: use `next_tokens` directly instead.
725
+ model_inputs = {"input_ids": input_ids.contiguous()}
726
+
727
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
728
+ if cache_position is None:
729
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
730
+ elif use_cache:
731
+ cache_position = cache_position[-input_length:]
732
+
733
+ model_inputs.update(
734
+ {
735
+ "position_ids": position_ids,
736
+ "cache_position": cache_position,
737
+ "past_key_values": past_key_values,
738
+ "use_cache": use_cache,
739
+ "attention_mask": attention_mask,
740
+ }
741
+ )
742
+ return model_inputs
743
+
744
+ @staticmethod
745
+ def _reorder_cache(past_key_values, beam_idx):
746
+ reordered_past = ()
747
+ for layer_past in past_key_values:
748
+ reordered_past += (
749
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
750
+ )
751
+ return reordered_past
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.43.4"
8
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c0c269edfa18303ce719cc4efa5ce9d5620da1c471c34bfc70085432fafd52
3
+ size 4903351824
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cce8d68c42e1ccfaa649bd92698c924549cb1eec44ca31a8782a4b87b62d170
3
+ size 4947570728
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c99c724d3a22ceec5102306758cfabe3145bb2b98f350024002c26374830d73
3
+ size 4962221328
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa3fbc948c964915491e7e4d84d9033e85aef79b86f2b254a8cb4259b6952526
3
+ size 3670576304
model.safetensors.index.json ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18483662848
4
+ },
5
+ "weight_map": {
6
+ "lm_head.0.linear_head.weight": "model-00004-of-00004.safetensors",
7
+ "lm_head.1.linear_head.weight": "model-00004-of-00004.safetensors",
8
+ "lm_head.10.linear_head.weight": "model-00004-of-00004.safetensors",
9
+ "lm_head.11.linear_head.weight": "model-00004-of-00004.safetensors",
10
+ "lm_head.12.linear_head.weight": "model-00004-of-00004.safetensors",
11
+ "lm_head.13.linear_head.weight": "model-00004-of-00004.safetensors",
12
+ "lm_head.14.linear_head.weight": "model-00004-of-00004.safetensors",
13
+ "lm_head.15.linear_head.weight": "model-00004-of-00004.safetensors",
14
+ "lm_head.16.linear_head.weight": "model-00004-of-00004.safetensors",
15
+ "lm_head.17.linear_head.weight": "model-00004-of-00004.safetensors",
16
+ "lm_head.18.linear_head.weight": "model-00004-of-00004.safetensors",
17
+ "lm_head.19.linear_head.weight": "model-00004-of-00004.safetensors",
18
+ "lm_head.2.linear_head.weight": "model-00004-of-00004.safetensors",
19
+ "lm_head.20.linear_head.weight": "model-00004-of-00004.safetensors",
20
+ "lm_head.21.linear_head.weight": "model-00004-of-00004.safetensors",
21
+ "lm_head.22.linear_head.weight": "model-00004-of-00004.safetensors",
22
+ "lm_head.23.linear_head.weight": "model-00004-of-00004.safetensors",
23
+ "lm_head.24.linear_head.weight": "model-00004-of-00004.safetensors",
24
+ "lm_head.25.linear_head.weight": "model-00004-of-00004.safetensors",
25
+ "lm_head.26.linear_head.weight": "model-00004-of-00004.safetensors",
26
+ "lm_head.27.linear_head.weight": "model-00004-of-00004.safetensors",
27
+ "lm_head.28.linear_head.weight": "model-00004-of-00004.safetensors",
28
+ "lm_head.29.linear_head.weight": "model-00004-of-00004.safetensors",
29
+ "lm_head.3.linear_head.weight": "model-00004-of-00004.safetensors",
30
+ "lm_head.30.linear_head.weight": "model-00004-of-00004.safetensors",
31
+ "lm_head.31.linear_head.weight": "model-00004-of-00004.safetensors",
32
+ "lm_head.32.linear_head.weight": "model-00004-of-00004.safetensors",
33
+ "lm_head.33.linear_head.weight": "model-00004-of-00004.safetensors",
34
+ "lm_head.34.linear_head.weight": "model-00004-of-00004.safetensors",
35
+ "lm_head.4.linear_head.weight": "model-00004-of-00004.safetensors",
36
+ "lm_head.5.linear_head.weight": "model-00004-of-00004.safetensors",
37
+ "lm_head.6.linear_head.weight": "model-00004-of-00004.safetensors",
38
+ "lm_head.7.linear_head.weight": "model-00004-of-00004.safetensors",
39
+ "lm_head.8.linear_head.weight": "model-00004-of-00004.safetensors",
40
+ "lm_head.9.linear_head.weight": "model-00004-of-00004.safetensors",
41
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
47
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
48
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
50
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
52
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
53
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
54
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
55
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
56
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
57
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
58
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
59
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
60
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
61
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
62
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
63
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
64
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
175
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
176
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
177
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
178
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
179
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
180
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
181
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
182
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
183
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
184
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
185
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
195
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.26.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.26.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.27.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.27.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.28.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.28.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.29.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.29.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
302
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.30.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.30.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.31.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.31.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
329
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
331
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
332
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.32.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
334
+ "model.layers.32.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
339
+ "model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
340
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
341
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
342
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
343
+ "model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
344
+ "model.layers.33.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
345
+ "model.layers.33.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
346
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
347
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
348
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
349
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
350
+ "model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
351
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
352
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
353
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
354
+ "model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
355
+ "model.layers.34.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
356
+ "model.layers.34.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
357
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
358
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
359
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
360
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
361
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
362
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
363
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
364
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
365
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
366
+ "model.layers.35.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
367
+ "model.layers.35.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
368
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
369
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
370
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
371
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
372
+ "model.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
373
+ "model.layers.36.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
374
+ "model.layers.36.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
375
+ "model.layers.36.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
376
+ "model.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
377
+ "model.layers.36.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
378
+ "model.layers.36.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
379
+ "model.layers.36.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
380
+ "model.layers.36.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
381
+ "model.layers.36.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
382
+ "model.layers.36.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
383
+ "model.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
384
+ "model.layers.37.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
385
+ "model.layers.37.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
386
+ "model.layers.37.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
387
+ "model.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
388
+ "model.layers.37.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
389
+ "model.layers.37.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
390
+ "model.layers.37.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
391
+ "model.layers.37.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
392
+ "model.layers.37.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
393
+ "model.layers.37.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
394
+ "model.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
395
+ "model.layers.38.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
396
+ "model.layers.38.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
397
+ "model.layers.38.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
398
+ "model.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
399
+ "model.layers.38.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
400
+ "model.layers.38.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
401
+ "model.layers.38.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
402
+ "model.layers.38.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
403
+ "model.layers.38.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
404
+ "model.layers.38.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
405
+ "model.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
406
+ "model.layers.39.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
407
+ "model.layers.39.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
408
+ "model.layers.39.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
409
+ "model.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
410
+ "model.layers.39.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
411
+ "model.layers.39.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
412
+ "model.layers.39.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
413
+ "model.layers.39.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
414
+ "model.layers.39.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
421
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
422
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
423
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
424
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
426
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
427
+ "model.layers.40.input_layernorm.weight": "model-00004-of-00004.safetensors",
428
+ "model.layers.40.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
429
+ "model.layers.40.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
430
+ "model.layers.40.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
431
+ "model.layers.40.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
432
+ "model.layers.40.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
433
+ "model.layers.40.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
436
+ "model.layers.40.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
437
+ "model.layers.40.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
438
+ "model.layers.41.input_layernorm.weight": "model-00004-of-00004.safetensors",
439
+ "model.layers.41.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
440
+ "model.layers.41.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
441
+ "model.layers.41.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
442
+ "model.layers.41.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
443
+ "model.layers.41.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
444
+ "model.layers.41.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
445
+ "model.layers.41.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
446
+ "model.layers.41.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
447
+ "model.layers.41.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
448
+ "model.layers.41.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
449
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
450
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
451
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
452
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
453
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
454
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
455
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
456
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
457
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
458
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
459
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
460
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
461
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
462
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
463
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
464
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
465
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
466
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
467
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
468
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
469
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
470
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
471
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
472
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
473
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
474
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
475
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
476
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
477
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
478
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
479
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
480
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
481
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
482
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
483
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
484
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
485
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
486
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
487
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
488
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
489
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
490
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
491
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
492
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
493
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
494
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
495
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
496
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
497
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
498
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
499
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
500
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
501
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
502
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
503
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
504
+ "model.norm.weight": "model-00004-of-00004.safetensors"
505
+ }
506
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7da53ca29fb16f6b2489482fc0bc6a394162cdab14d12764a1755ebc583fea79
3
+ size 17518525
tokenizer_config.json ADDED
@@ -0,0 +1,1756 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ }
1741
+ },
1742
+ "additional_special_tokens": [
1743
+ "<start_of_turn>",
1744
+ "<end_of_turn>"
1745
+ ],
1746
+ "bos_token": "<bos>",
1747
+ "clean_up_tokenization_spaces": false,
1748
+ "eos_token": "<eos>",
1749
+ "model_max_length": 1000000000000000019884624838656,
1750
+ "pad_token": "<pad>",
1751
+ "sp_model_kwargs": {},
1752
+ "spaces_between_special_tokens": false,
1753
+ "tokenizer_class": "GemmaTokenizer",
1754
+ "unk_token": "<unk>",
1755
+ "use_default_system_prompt": false
1756
+ }