Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +42 -0
- gemma_config.py +67 -0
- gemma_model.py +751 -0
- generation_config.json +8 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +506 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer_config.json +1756 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-reranker-v2.5-gemma2-lightweight",
|
3 |
+
"architectures": [
|
4 |
+
"CostWiseGemmaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"attn_logit_softcapping": 50.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "BAAI/bge-reranker-v2.5-gemma2-lightweight--gemma_config.CostWiseGemmaConfig",
|
11 |
+
"AutoModel": "BAAI/bge-reranker-v2.5-gemma2-lightweight--gemma_model.CostWiseGemmaModel",
|
12 |
+
"AutoModelForCausalLM": "BAAI/bge-reranker-v2.5-gemma2-lightweight--gemma_model.CostWiseGemmaForCausalLM"
|
13 |
+
},
|
14 |
+
"bos_token_id": 2,
|
15 |
+
"cache_implementation": "hybrid",
|
16 |
+
"eos_token_id": 1,
|
17 |
+
"final_logit_softcapping": 30.0,
|
18 |
+
"head_dim": 256,
|
19 |
+
"hidden_act": "gelu_pytorch_tanh",
|
20 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
21 |
+
"hidden_size": 3584,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 14336,
|
24 |
+
"layer_sep": 1,
|
25 |
+
"layer_wise": true,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "cost_wise_gemma",
|
28 |
+
"num_attention_heads": 16,
|
29 |
+
"num_hidden_layers": 42,
|
30 |
+
"num_key_value_heads": 8,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"query_pre_attn_scalar": 256,
|
33 |
+
"rms_norm_eps": 1e-06,
|
34 |
+
"rope_theta": 10000.0,
|
35 |
+
"sliding_window": 4096,
|
36 |
+
"sliding_window_size": 4096,
|
37 |
+
"start_layer": 8,
|
38 |
+
"torch_dtype": "float16",
|
39 |
+
"transformers_version": "4.43.4",
|
40 |
+
"use_cache": true,
|
41 |
+
"vocab_size": 256000
|
42 |
+
}
|
gemma_config.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from <path_to_diff_file.py>.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the diff. If any change should be done, please apply the change to the
|
5 |
+
# diff.py file directly.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
|
23 |
+
|
24 |
+
from transformers.models.gemma2.configuration_gemma2 import Gemma2Config
|
25 |
+
|
26 |
+
class CostWiseGemmaConfig(Gemma2Config):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the Gemma-7B.
|
31 |
+
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
Args:
|
35 |
+
start_layer (`int`, *optional*, defaults to 28):
|
36 |
+
The start layer to output score.
|
37 |
+
layer_sep (`int`, *optional*, defaults to 28):
|
38 |
+
The sep layer from the start layer to output score.
|
39 |
+
layer_wise (`bool`, *optional*, defaults to `False`):
|
40 |
+
Whether or not the model should be layerwise.
|
41 |
+
```python
|
42 |
+
>>> from transformers import Gemma2Model, Gemma2Config
|
43 |
+
>>> # Initializing a Gemma2 gemma2-9b style configuration
|
44 |
+
>>> configuration = Gemma2Config()
|
45 |
+
>>> # Initializing a model from the gemma2-9b style configuration
|
46 |
+
>>> model = Gemma2Model(configuration)
|
47 |
+
>>> # Accessing the model configuration
|
48 |
+
>>> configuration = model.config
|
49 |
+
```"""
|
50 |
+
|
51 |
+
model_type = "cost_wise_gemma"
|
52 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
start_layer: int = 28,
|
57 |
+
layer_sep: int = 28,
|
58 |
+
layer_wise: bool = False,
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
self.start_layer = start_layer
|
62 |
+
self.layer_sep = layer_sep
|
63 |
+
self.layer_wise = layer_wise
|
64 |
+
|
65 |
+
super().__init__(
|
66 |
+
**kwargs,
|
67 |
+
)
|
gemma_model.py
ADDED
@@ -0,0 +1,751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from <path_to_diff_file.py>.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the diff. If any change should be done, please apply the change to the
|
5 |
+
# diff.py file directly.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
import math
|
25 |
+
from typing import List, Optional, Tuple, Union
|
26 |
+
|
27 |
+
import inspect
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from torch import nn
|
32 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
+
|
34 |
+
from transformers.activations import ACT2FN
|
35 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
36 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
37 |
+
from transformers.modeling_outputs import (
|
38 |
+
BaseModelOutputWithPast,
|
39 |
+
CausalLMOutputWithPast,
|
40 |
+
SequenceClassifierOutputWithPast,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
45 |
+
from transformers.utils import (
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
is_flash_attn_2_available,
|
49 |
+
is_flash_attn_greater_or_equal_2_10,
|
50 |
+
logging,
|
51 |
+
replace_return_docstrings,
|
52 |
+
ModelOutput,
|
53 |
+
)
|
54 |
+
from .gemma_config import CostWiseGemmaConfig
|
55 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb
|
56 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING
|
57 |
+
from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
|
58 |
+
|
59 |
+
if is_flash_attn_2_available():
|
60 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
61 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
62 |
+
|
63 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
64 |
+
|
65 |
+
|
66 |
+
logger = logging.get_logger(__name__)
|
67 |
+
|
68 |
+
|
69 |
+
def _get_unpad_data(attention_mask):
|
70 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
71 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
72 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
73 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
74 |
+
return (
|
75 |
+
indices,
|
76 |
+
cu_seqlens,
|
77 |
+
max_seqlen_in_batch,
|
78 |
+
)
|
79 |
+
|
80 |
+
@add_start_docstrings(
|
81 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
82 |
+
GEMMA2_START_DOCSTRING,
|
83 |
+
)
|
84 |
+
class CostWiseGemma2PreTrainedModel(PreTrainedModel):
|
85 |
+
config_class = CostWiseGemmaConfig
|
86 |
+
base_model_prefix = "model"
|
87 |
+
supports_gradient_checkpointing = True
|
88 |
+
_no_split_modules = ["Gemma2DecoderLayer"]
|
89 |
+
_skip_keys_device_placement = ["past_key_values"]
|
90 |
+
_supports_flash_attn_2 = True
|
91 |
+
_supports_sdpa = True
|
92 |
+
_supports_cache_class = False
|
93 |
+
_supports_quantized_cache = False
|
94 |
+
_supports_static_cache = True
|
95 |
+
_is_stateful = True
|
96 |
+
|
97 |
+
def _init_weights(self, module):
|
98 |
+
std = self.config.initializer_range
|
99 |
+
if isinstance(module, nn.Linear):
|
100 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
101 |
+
if module.bias is not None:
|
102 |
+
module.bias.data.zero_()
|
103 |
+
elif isinstance(module, nn.Embedding):
|
104 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
105 |
+
if module.padding_idx is not None:
|
106 |
+
module.weight.data[module.padding_idx].zero_()
|
107 |
+
|
108 |
+
GEMMA2_ATTENTION_CLASSES = {
|
109 |
+
"eager": Gemma2Attention,
|
110 |
+
"flash_attention_2": Gemma2FlashAttention2,
|
111 |
+
"sdpa": Gemma2SdpaAttention,
|
112 |
+
}
|
113 |
+
|
114 |
+
|
115 |
+
_CONFIG_FOR_DOC = "CostWiseGemmaConfig"
|
116 |
+
|
117 |
+
@dataclass
|
118 |
+
class CostWiseModelOutputWithPast(ModelOutput):
|
119 |
+
last_hidden_state: torch.FloatTensor = None
|
120 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
121 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
122 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
123 |
+
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
|
124 |
+
|
125 |
+
@dataclass
|
126 |
+
class CostWiseCausalLMOutputWithPast(ModelOutput):
|
127 |
+
loss: Optional[torch.FloatTensor] = None
|
128 |
+
logits: torch.FloatTensor = None
|
129 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
130 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
131 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
132 |
+
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
|
133 |
+
|
134 |
+
def token_compress(compress_ratio,
|
135 |
+
hidden_states,
|
136 |
+
attention_mask,
|
137 |
+
query_lengths,
|
138 |
+
prompt_lengths):
|
139 |
+
"""
|
140 |
+
compress_ratio: int
|
141 |
+
hidden_states: (b, s, h)
|
142 |
+
attention_mask: (b, s)
|
143 |
+
query_lengths: (b)
|
144 |
+
prompt_lengths: (b)
|
145 |
+
"""
|
146 |
+
# get some specific parameters
|
147 |
+
passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths (b)
|
148 |
+
retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained (b)
|
149 |
+
final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress (b)
|
150 |
+
max_passage_length = torch.max(passage_lengths) # the max passage lengths (1)
|
151 |
+
max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress (1)
|
152 |
+
# make new hidden states and new attention masks
|
153 |
+
new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths,
|
154 |
+
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) # (b, s', h)
|
155 |
+
new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) # (b, s')
|
156 |
+
# get new attention mask
|
157 |
+
mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None]
|
158 |
+
new_attention_mask[mask_attention_index] = 0
|
159 |
+
# get new hidden states
|
160 |
+
# add query into new hidden states
|
161 |
+
query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
|
162 |
+
mask_query_index = query_index < query_lengths[:, None]
|
163 |
+
new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index]
|
164 |
+
# add prompt into new hidden states
|
165 |
+
# get the index of the prompt in new hidden states
|
166 |
+
new_prompt_start_length = query_lengths + retain_passage_lengths
|
167 |
+
new_prompt_end_length = new_prompt_start_length + prompt_lengths
|
168 |
+
new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
|
169 |
+
new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None]
|
170 |
+
new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None]
|
171 |
+
new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end
|
172 |
+
# get the index of the prompt in hidden states
|
173 |
+
raw_prompt_start_length = query_lengths + passage_lengths
|
174 |
+
raw_prompt_end_length = raw_prompt_start_length + prompt_lengths
|
175 |
+
raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
176 |
+
raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None]
|
177 |
+
raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None]
|
178 |
+
raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end
|
179 |
+
# replace the prompt hidden states
|
180 |
+
new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index]
|
181 |
+
# 以上均没问题
|
182 |
+
|
183 |
+
# print(new_hidden_states.view(len(new_hidden_states), -1))
|
184 |
+
# print(new_attention_mask)
|
185 |
+
|
186 |
+
# get the index of the passage in new hidden states
|
187 |
+
new_passage_start_length = query_lengths
|
188 |
+
new_passage_end_length = new_passage_start_length + retain_passage_lengths
|
189 |
+
new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
|
190 |
+
new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None]
|
191 |
+
new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None]
|
192 |
+
new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end
|
193 |
+
# print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths)
|
194 |
+
# add passage into new hidden states
|
195 |
+
# get mask hidden states
|
196 |
+
psg_start_length = query_lengths
|
197 |
+
psg_end_length = query_lengths + passage_lengths
|
198 |
+
psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
199 |
+
mask_psg_index_start = psg_index >= psg_start_length[:, None]
|
200 |
+
mask_psg_index_end = psg_index < psg_end_length[:, None]
|
201 |
+
mask_psg_index = mask_psg_index_start & mask_psg_index_end
|
202 |
+
|
203 |
+
hidden_states = hidden_states * mask_psg_index.unsqueeze(-1)
|
204 |
+
passage_hidden_states = torch.zeros((hidden_states.shape[0],
|
205 |
+
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio,
|
206 |
+
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
|
207 |
+
passage_end_length = passage_lengths
|
208 |
+
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length
|
209 |
+
mask_passage_index = passage_index < passage_end_length[:, None]
|
210 |
+
|
211 |
+
raw_passage_end_length = query_lengths + passage_lengths
|
212 |
+
raw_passage_start_length = query_lengths
|
213 |
+
raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
214 |
+
raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None]
|
215 |
+
raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None]
|
216 |
+
raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end
|
217 |
+
passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index]
|
218 |
+
|
219 |
+
passage_weights = torch.zeros((hidden_states.shape[0],
|
220 |
+
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio)
|
221 |
+
, dtype=hidden_states.dtype).to(hidden_states.device)
|
222 |
+
passage_weights[mask_passage_index] = 1
|
223 |
+
passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio)
|
224 |
+
passage_weights = passage_weights / torch.sum(passage_weights, dim=-1
|
225 |
+
).view(passage_weights.shape[0], -1, 1)
|
226 |
+
passage_weights = passage_weights.view(passage_weights.shape[0], -1)
|
227 |
+
# passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights)
|
228 |
+
passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1)
|
229 |
+
passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio,
|
230 |
+
passage_hidden_states.shape[-1])
|
231 |
+
passage_hidden_states = torch.sum(passage_hidden_states, dim=2)
|
232 |
+
passage_end_length = retain_passage_lengths
|
233 |
+
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
|
234 |
+
mask_passage_index = passage_index < passage_end_length[:, None]
|
235 |
+
new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index]
|
236 |
+
|
237 |
+
return new_hidden_states, new_attention_mask
|
238 |
+
|
239 |
+
@add_start_docstrings(
|
240 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
241 |
+
GEMMA2_START_DOCSTRING,
|
242 |
+
)
|
243 |
+
class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel):
|
244 |
+
"""
|
245 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
|
246 |
+
|
247 |
+
Args:
|
248 |
+
config: GemmaConfig
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(self, config: CostWiseGemmaConfig):
|
252 |
+
super().__init__(config)
|
253 |
+
self.padding_idx = config.pad_token_id
|
254 |
+
self.vocab_size = config.vocab_size
|
255 |
+
|
256 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
257 |
+
self.layers = nn.ModuleList(
|
258 |
+
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
259 |
+
)
|
260 |
+
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
261 |
+
self.gradient_checkpointing = False
|
262 |
+
|
263 |
+
# Initialize weights and apply final processing
|
264 |
+
self.post_init()
|
265 |
+
|
266 |
+
def get_input_embeddings(self):
|
267 |
+
return self.embed_tokens
|
268 |
+
|
269 |
+
def set_input_embeddings(self, value):
|
270 |
+
self.embed_tokens = value
|
271 |
+
|
272 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
273 |
+
def forward(
|
274 |
+
self,
|
275 |
+
input_ids: torch.LongTensor = None,
|
276 |
+
attention_mask: Optional[torch.Tensor] = None,
|
277 |
+
position_ids: Optional[torch.LongTensor] = None,
|
278 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
279 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
280 |
+
use_cache: Optional[bool] = None,
|
281 |
+
output_attentions: Optional[bool] = None,
|
282 |
+
output_hidden_states: Optional[bool] = None,
|
283 |
+
return_dict: Optional[bool] = None,
|
284 |
+
cache_position: Optional[torch.LongTensor] = None,
|
285 |
+
compress_layer: Optional[int] = None,
|
286 |
+
compress_ratio: Optional[int] = None,
|
287 |
+
cutoff_layers: Optional[List[int]] = None,
|
288 |
+
query_lengths: Optional[int] = None,
|
289 |
+
prompt_lengths: Optional[int] = None,
|
290 |
+
) -> Union[Tuple, CostWiseModelOutputWithPast]:
|
291 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
292 |
+
|
293 |
+
compress_ratio = None if compress_ratio == 1 else compress_ratio
|
294 |
+
|
295 |
+
output_hidden_states = (
|
296 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
297 |
+
)
|
298 |
+
if self.config.layer_wise:
|
299 |
+
output_hidden_states = True
|
300 |
+
|
301 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
302 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
303 |
+
|
304 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
305 |
+
raise ValueError(
|
306 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
307 |
+
)
|
308 |
+
|
309 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
310 |
+
logger.warning_once(
|
311 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
312 |
+
)
|
313 |
+
use_cache = False
|
314 |
+
|
315 |
+
if compress_layer is not None and compress_ratio is not None:
|
316 |
+
logger.warning_once(
|
317 |
+
"`use_cache=True` is incompatible with reranker. Setting `use_cache=False`."
|
318 |
+
)
|
319 |
+
use_cache = False
|
320 |
+
|
321 |
+
if inputs_embeds is None:
|
322 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
323 |
+
|
324 |
+
if cache_position is None:
|
325 |
+
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
|
326 |
+
|
327 |
+
if position_ids is None:
|
328 |
+
position_ids = cache_position.unsqueeze(0)
|
329 |
+
|
330 |
+
causal_mask = self._update_causal_mask(
|
331 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
332 |
+
)
|
333 |
+
|
334 |
+
# embed positions
|
335 |
+
hidden_states = inputs_embeds
|
336 |
+
|
337 |
+
# normalized
|
338 |
+
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
339 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
340 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
341 |
+
hidden_states = hidden_states * normalizer
|
342 |
+
|
343 |
+
# decoder layers
|
344 |
+
all_hidden_states = () if output_hidden_states else None
|
345 |
+
all_attention_masks = ()
|
346 |
+
all_self_attns = () if output_attentions else None
|
347 |
+
next_decoder_cache = None
|
348 |
+
|
349 |
+
is_padding_left = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and (
|
350 |
+
torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1])
|
351 |
+
query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths
|
352 |
+
prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths
|
353 |
+
if not isinstance(query_lengths, torch.Tensor):
|
354 |
+
query_lengths = torch.tensor(query_lengths, device=hidden_states.device)
|
355 |
+
if not isinstance(prompt_lengths, torch.Tensor):
|
356 |
+
prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device)
|
357 |
+
|
358 |
+
if cutoff_layers is None:
|
359 |
+
max_layer = self.config.num_hidden_layers
|
360 |
+
cutoff_layers = [max_layer]
|
361 |
+
if isinstance(cutoff_layers, int):
|
362 |
+
max_layer = cutoff_layers
|
363 |
+
cutoff_layers = [cutoff_layers]
|
364 |
+
else:
|
365 |
+
max_layer = max(cutoff_layers)
|
366 |
+
|
367 |
+
for idx, decoder_layer in enumerate(self.layers):
|
368 |
+
if self.config.layer_wise:
|
369 |
+
if idx in cutoff_layers and output_hidden_states:
|
370 |
+
all_hidden_states += (self.norm(hidden_states),)
|
371 |
+
all_attention_masks += (attention_mask,)
|
372 |
+
if idx == max_layer:
|
373 |
+
break
|
374 |
+
elif output_hidden_states:
|
375 |
+
all_hidden_states += (hidden_states,)
|
376 |
+
|
377 |
+
if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0:
|
378 |
+
if is_padding_left:
|
379 |
+
raise ValueError('You must use right padding...')
|
380 |
+
hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask,
|
381 |
+
query_lengths, prompt_lengths)
|
382 |
+
seq_length = hidden_states.shape[1]
|
383 |
+
cache_position = torch.arange(0, seq_length, device=hidden_states.device)
|
384 |
+
position_ids = cache_position.unsqueeze(0)
|
385 |
+
causal_mask = self._update_causal_mask(
|
386 |
+
attention_mask, hidden_states, cache_position, past_key_values, output_attentions
|
387 |
+
)
|
388 |
+
|
389 |
+
if self.gradient_checkpointing and self.training:
|
390 |
+
layer_outputs = self._gradient_checkpointing_func(
|
391 |
+
decoder_layer.__call__,
|
392 |
+
hidden_states,
|
393 |
+
causal_mask,
|
394 |
+
position_ids,
|
395 |
+
past_key_values,
|
396 |
+
output_attentions,
|
397 |
+
use_cache,
|
398 |
+
cache_position,
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
layer_outputs = decoder_layer(
|
402 |
+
hidden_states,
|
403 |
+
attention_mask=causal_mask,
|
404 |
+
position_ids=position_ids,
|
405 |
+
past_key_value=past_key_values,
|
406 |
+
output_attentions=output_attentions,
|
407 |
+
use_cache=use_cache,
|
408 |
+
cache_position=cache_position,
|
409 |
+
)
|
410 |
+
|
411 |
+
hidden_states = layer_outputs[0]
|
412 |
+
|
413 |
+
if output_attentions:
|
414 |
+
all_self_attns += (layer_outputs[1],)
|
415 |
+
|
416 |
+
hidden_states = self.norm(hidden_states)
|
417 |
+
|
418 |
+
# add hidden states from the last decoder layer
|
419 |
+
if not self.config.layer_wise:
|
420 |
+
if output_hidden_states:
|
421 |
+
all_hidden_states += (hidden_states,)
|
422 |
+
all_attention_masks += (attention_mask,)
|
423 |
+
else:
|
424 |
+
if output_hidden_states and self.config.num_hidden_layers == max_layer:
|
425 |
+
all_hidden_states += (hidden_states,)
|
426 |
+
all_attention_masks += (attention_mask,)
|
427 |
+
|
428 |
+
next_cache = next_decoder_cache if use_cache else None
|
429 |
+
|
430 |
+
if not return_dict:
|
431 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
432 |
+
return CostWiseModelOutputWithPast(
|
433 |
+
last_hidden_state=hidden_states,
|
434 |
+
past_key_values=next_cache,
|
435 |
+
hidden_states=all_hidden_states,
|
436 |
+
attentions=all_self_attns,
|
437 |
+
attention_masks=all_attention_masks
|
438 |
+
)
|
439 |
+
|
440 |
+
def _update_causal_mask(
|
441 |
+
self,
|
442 |
+
attention_mask: torch.Tensor,
|
443 |
+
input_tensor: torch.Tensor,
|
444 |
+
cache_position: torch.Tensor,
|
445 |
+
past_key_values: Cache,
|
446 |
+
output_attentions: bool,
|
447 |
+
):
|
448 |
+
if self.config._attn_implementation == "flash_attention_2":
|
449 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
450 |
+
return attention_mask
|
451 |
+
return None
|
452 |
+
|
453 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
454 |
+
min_dtype = torch.finfo(dtype).min
|
455 |
+
sequence_length = input_tensor.shape[1]
|
456 |
+
if past_key_values is not None:
|
457 |
+
target_length = past_key_values.get_max_length()
|
458 |
+
else:
|
459 |
+
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
460 |
+
|
461 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
462 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
463 |
+
if attention_mask.max() != 0:
|
464 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
465 |
+
causal_mask = attention_mask
|
466 |
+
else:
|
467 |
+
causal_mask = torch.full(
|
468 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
469 |
+
)
|
470 |
+
if sequence_length != 1:
|
471 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
472 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
473 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
474 |
+
if attention_mask is not None:
|
475 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
476 |
+
mask_length = attention_mask.shape[-1]
|
477 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
478 |
+
padding_mask = padding_mask == 0
|
479 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
480 |
+
padding_mask, min_dtype
|
481 |
+
)
|
482 |
+
return causal_mask
|
483 |
+
|
484 |
+
|
485 |
+
class CostWiseHead(nn.Module):
|
486 |
+
"""Head for sentence-level classification tasks."""
|
487 |
+
|
488 |
+
def __init__(self, input_size, output_size):
|
489 |
+
super().__init__()
|
490 |
+
self.linear_head = nn.Linear(input_size, output_size, bias=False)
|
491 |
+
|
492 |
+
def forward(self, **kwargs):
|
493 |
+
return self.linear_head(**kwargs)
|
494 |
+
|
495 |
+
|
496 |
+
class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel):
|
497 |
+
_tied_weights_keys = ["lm_head.weight"]
|
498 |
+
|
499 |
+
def __init__(self, config: CostWiseGemmaConfig):
|
500 |
+
super().__init__(config)
|
501 |
+
self.model = CostWiseGemmaModel(config)
|
502 |
+
self.vocab_size = config.vocab_size
|
503 |
+
|
504 |
+
if not config.layer_wise:
|
505 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
506 |
+
else:
|
507 |
+
self.lm_head = nn.ModuleList(
|
508 |
+
[CostWiseHead(config.hidden_size, 1) for _ in range(
|
509 |
+
config.start_layer, config.num_hidden_layers + 1, config.layer_sep
|
510 |
+
)]
|
511 |
+
)
|
512 |
+
|
513 |
+
# Initialize weights and apply final processing
|
514 |
+
self.post_init()
|
515 |
+
|
516 |
+
def get_input_embeddings(self):
|
517 |
+
return self.model.embed_tokens
|
518 |
+
|
519 |
+
def set_input_embeddings(self, value):
|
520 |
+
self.model.embed_tokens = value
|
521 |
+
|
522 |
+
def get_output_embeddings(self):
|
523 |
+
return self.lm_head
|
524 |
+
|
525 |
+
def set_output_embeddings(self, new_embeddings):
|
526 |
+
self.lm_head = new_embeddings
|
527 |
+
|
528 |
+
def set_decoder(self, decoder):
|
529 |
+
self.model = decoder
|
530 |
+
|
531 |
+
def get_decoder(self):
|
532 |
+
return self.model
|
533 |
+
|
534 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
535 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
536 |
+
def forward(
|
537 |
+
self,
|
538 |
+
input_ids: torch.LongTensor = None,
|
539 |
+
attention_mask: Optional[torch.Tensor] = None,
|
540 |
+
position_ids: Optional[torch.LongTensor] = None,
|
541 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
542 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
543 |
+
labels: Optional[torch.LongTensor] = None,
|
544 |
+
use_cache: Optional[bool] = None,
|
545 |
+
output_attentions: Optional[bool] = None,
|
546 |
+
output_hidden_states: Optional[bool] = None,
|
547 |
+
return_dict: Optional[bool] = None,
|
548 |
+
cache_position: Optional[torch.LongTensor] = None,
|
549 |
+
compress_layer: Optional[int] = None,
|
550 |
+
compress_ratio: Optional[int] = None,
|
551 |
+
cutoff_layers: Optional[List[int]] = None,
|
552 |
+
query_lengths: Optional[int] = None,
|
553 |
+
prompt_lengths: Optional[int] = None,
|
554 |
+
) -> Union[Tuple, CostWiseCausalLMOutputWithPast]:
|
555 |
+
r"""
|
556 |
+
Args:
|
557 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
558 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
|
559 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
560 |
+
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
|
561 |
+
|
562 |
+
Returns:
|
563 |
+
|
564 |
+
Example:
|
565 |
+
|
566 |
+
```python
|
567 |
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
568 |
+
|
569 |
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
|
570 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
571 |
+
|
572 |
+
>>> prompt = "What is your favorite condiment?"
|
573 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
574 |
+
|
575 |
+
>>> # Generate
|
576 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
577 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
578 |
+
"What is your favorite condiment?"
|
579 |
+
```"""
|
580 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
581 |
+
output_hidden_states = (
|
582 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
583 |
+
)
|
584 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
585 |
+
|
586 |
+
if compress_ratio is not None and compress_ratio == 1:
|
587 |
+
compress_ratio = None
|
588 |
+
|
589 |
+
if self.config.layer_wise:
|
590 |
+
if cutoff_layers is None:
|
591 |
+
cutoff_layers = [self.config.num_hidden_layers]
|
592 |
+
elif isinstance(cutoff_layers, int):
|
593 |
+
cutoff_layers = [cutoff_layers]
|
594 |
+
can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep))
|
595 |
+
remove_layers = [i for i in cutoff_layers if i not in can_use_layers]
|
596 |
+
if len(remove_layers) > 0:
|
597 |
+
logger.warning_once(
|
598 |
+
f"layers {remove_layers} are incompatible with the setting. They will be removed..."
|
599 |
+
)
|
600 |
+
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
|
601 |
+
if len(cutoff_layers) == 0:
|
602 |
+
raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]")
|
603 |
+
|
604 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
605 |
+
outputs = self.model(
|
606 |
+
input_ids=input_ids,
|
607 |
+
attention_mask=attention_mask,
|
608 |
+
position_ids=position_ids,
|
609 |
+
past_key_values=past_key_values,
|
610 |
+
inputs_embeds=inputs_embeds,
|
611 |
+
use_cache=use_cache,
|
612 |
+
output_attentions=output_attentions,
|
613 |
+
output_hidden_states=output_hidden_states,
|
614 |
+
return_dict=return_dict,
|
615 |
+
cache_position=cache_position,
|
616 |
+
compress_layer=compress_layer,
|
617 |
+
compress_ratio=compress_ratio,
|
618 |
+
query_lengths=query_lengths,
|
619 |
+
prompt_lengths=prompt_lengths,
|
620 |
+
cutoff_layers=cutoff_layers,
|
621 |
+
)
|
622 |
+
|
623 |
+
if not self.config.layer_wise:
|
624 |
+
hidden_states = outputs[0]
|
625 |
+
logits = self.lm_head(hidden_states)
|
626 |
+
if self.config.final_logit_softcapping is not None:
|
627 |
+
logits = logits / self.config.final_logit_softcapping
|
628 |
+
logits = torch.tanh(logits)
|
629 |
+
logits = logits * self.config.final_logit_softcapping
|
630 |
+
logits = logits.float()
|
631 |
+
loss = None
|
632 |
+
if labels is not None:
|
633 |
+
# Shift so that tokens < n predict n
|
634 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
635 |
+
shift_labels = labels[..., 1:].contiguous()
|
636 |
+
# Flatten the tokens
|
637 |
+
loss_fct = CrossEntropyLoss()
|
638 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
639 |
+
shift_labels = shift_labels.view(-1)
|
640 |
+
# Enable model parallelism
|
641 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
642 |
+
loss = loss_fct(shift_logits, shift_labels)
|
643 |
+
else:
|
644 |
+
hidden_states = outputs.hidden_states
|
645 |
+
logits = ()
|
646 |
+
for i in range(len(hidden_states)):
|
647 |
+
tmp_logits = self.lm_head[i].linear_head(hidden_states[i])
|
648 |
+
if self.config.final_logit_softcapping is not None:
|
649 |
+
tmp_logits = tmp_logits / self.config.final_logit_softcapping
|
650 |
+
tmp_logits = torch.tanh(tmp_logits)
|
651 |
+
tmp_logits = tmp_logits * self.config.final_logit_softcapping
|
652 |
+
tmp_logits = tmp_logits.float()
|
653 |
+
tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1)
|
654 |
+
logits = logits + (tmp_logits,)
|
655 |
+
loss = None
|
656 |
+
|
657 |
+
if not return_dict:
|
658 |
+
output = (logits,) + outputs[1:]
|
659 |
+
return (loss,) + output if loss is not None else output
|
660 |
+
|
661 |
+
return CostWiseCausalLMOutputWithPast(
|
662 |
+
loss=loss,
|
663 |
+
logits=logits,
|
664 |
+
past_key_values=outputs.past_key_values,
|
665 |
+
hidden_states=outputs.hidden_states,
|
666 |
+
attentions=outputs.attentions,
|
667 |
+
attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1]
|
668 |
+
)
|
669 |
+
|
670 |
+
def prepare_inputs_for_generation(
|
671 |
+
self,
|
672 |
+
input_ids,
|
673 |
+
past_key_values=None,
|
674 |
+
attention_mask=None,
|
675 |
+
inputs_embeds=None,
|
676 |
+
cache_position=None,
|
677 |
+
use_cache=True,
|
678 |
+
**kwargs,
|
679 |
+
):
|
680 |
+
past_length = 0
|
681 |
+
if past_key_values is not None:
|
682 |
+
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore
|
683 |
+
past_length = cache_position[0] if cache_position is not None else torch.tensor(0, device=input_ids.device)
|
684 |
+
max_cache_length = (
|
685 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
686 |
+
if past_key_values.get_max_length() is not None
|
687 |
+
else None
|
688 |
+
)
|
689 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
690 |
+
|
691 |
+
# Keep only the unprocessed tokens:
|
692 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
693 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
694 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
695 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
696 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
697 |
+
# input_ids based on the past_length.
|
698 |
+
elif past_length < input_ids.shape[1]:
|
699 |
+
input_ids = input_ids[:, past_length:]
|
700 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
701 |
+
|
702 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
703 |
+
if (
|
704 |
+
max_cache_length is not None
|
705 |
+
and attention_mask is not None
|
706 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
707 |
+
):
|
708 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
709 |
+
|
710 |
+
position_ids = kwargs.get("position_ids", None)
|
711 |
+
if attention_mask is not None and position_ids is None:
|
712 |
+
# create position_ids on the fly for batch generation
|
713 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
714 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
715 |
+
if past_key_values:
|
716 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
717 |
+
|
718 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
719 |
+
if inputs_embeds is not None and past_length == 0:
|
720 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
721 |
+
else:
|
722 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
723 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
724 |
+
# TODO: use `next_tokens` directly instead.
|
725 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
726 |
+
|
727 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
728 |
+
if cache_position is None:
|
729 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
730 |
+
elif use_cache:
|
731 |
+
cache_position = cache_position[-input_length:]
|
732 |
+
|
733 |
+
model_inputs.update(
|
734 |
+
{
|
735 |
+
"position_ids": position_ids,
|
736 |
+
"cache_position": cache_position,
|
737 |
+
"past_key_values": past_key_values,
|
738 |
+
"use_cache": use_cache,
|
739 |
+
"attention_mask": attention_mask,
|
740 |
+
}
|
741 |
+
)
|
742 |
+
return model_inputs
|
743 |
+
|
744 |
+
@staticmethod
|
745 |
+
def _reorder_cache(past_key_values, beam_idx):
|
746 |
+
reordered_past = ()
|
747 |
+
for layer_past in past_key_values:
|
748 |
+
reordered_past += (
|
749 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
750 |
+
)
|
751 |
+
return reordered_past
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"cache_implementation": "hybrid",
|
5 |
+
"eos_token_id": 1,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"transformers_version": "4.43.4"
|
8 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50c0c269edfa18303ce719cc4efa5ce9d5620da1c471c34bfc70085432fafd52
|
3 |
+
size 4903351824
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cce8d68c42e1ccfaa649bd92698c924549cb1eec44ca31a8782a4b87b62d170
|
3 |
+
size 4947570728
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c99c724d3a22ceec5102306758cfabe3145bb2b98f350024002c26374830d73
|
3 |
+
size 4962221328
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa3fbc948c964915491e7e4d84d9033e85aef79b86f2b254a8cb4259b6952526
|
3 |
+
size 3670576304
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 18483662848
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.0.linear_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"lm_head.1.linear_head.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"lm_head.10.linear_head.weight": "model-00004-of-00004.safetensors",
|
9 |
+
"lm_head.11.linear_head.weight": "model-00004-of-00004.safetensors",
|
10 |
+
"lm_head.12.linear_head.weight": "model-00004-of-00004.safetensors",
|
11 |
+
"lm_head.13.linear_head.weight": "model-00004-of-00004.safetensors",
|
12 |
+
"lm_head.14.linear_head.weight": "model-00004-of-00004.safetensors",
|
13 |
+
"lm_head.15.linear_head.weight": "model-00004-of-00004.safetensors",
|
14 |
+
"lm_head.16.linear_head.weight": "model-00004-of-00004.safetensors",
|
15 |
+
"lm_head.17.linear_head.weight": "model-00004-of-00004.safetensors",
|
16 |
+
"lm_head.18.linear_head.weight": "model-00004-of-00004.safetensors",
|
17 |
+
"lm_head.19.linear_head.weight": "model-00004-of-00004.safetensors",
|
18 |
+
"lm_head.2.linear_head.weight": "model-00004-of-00004.safetensors",
|
19 |
+
"lm_head.20.linear_head.weight": "model-00004-of-00004.safetensors",
|
20 |
+
"lm_head.21.linear_head.weight": "model-00004-of-00004.safetensors",
|
21 |
+
"lm_head.22.linear_head.weight": "model-00004-of-00004.safetensors",
|
22 |
+
"lm_head.23.linear_head.weight": "model-00004-of-00004.safetensors",
|
23 |
+
"lm_head.24.linear_head.weight": "model-00004-of-00004.safetensors",
|
24 |
+
"lm_head.25.linear_head.weight": "model-00004-of-00004.safetensors",
|
25 |
+
"lm_head.26.linear_head.weight": "model-00004-of-00004.safetensors",
|
26 |
+
"lm_head.27.linear_head.weight": "model-00004-of-00004.safetensors",
|
27 |
+
"lm_head.28.linear_head.weight": "model-00004-of-00004.safetensors",
|
28 |
+
"lm_head.29.linear_head.weight": "model-00004-of-00004.safetensors",
|
29 |
+
"lm_head.3.linear_head.weight": "model-00004-of-00004.safetensors",
|
30 |
+
"lm_head.30.linear_head.weight": "model-00004-of-00004.safetensors",
|
31 |
+
"lm_head.31.linear_head.weight": "model-00004-of-00004.safetensors",
|
32 |
+
"lm_head.32.linear_head.weight": "model-00004-of-00004.safetensors",
|
33 |
+
"lm_head.33.linear_head.weight": "model-00004-of-00004.safetensors",
|
34 |
+
"lm_head.34.linear_head.weight": "model-00004-of-00004.safetensors",
|
35 |
+
"lm_head.4.linear_head.weight": "model-00004-of-00004.safetensors",
|
36 |
+
"lm_head.5.linear_head.weight": "model-00004-of-00004.safetensors",
|
37 |
+
"lm_head.6.linear_head.weight": "model-00004-of-00004.safetensors",
|
38 |
+
"lm_head.7.linear_head.weight": "model-00004-of-00004.safetensors",
|
39 |
+
"lm_head.8.linear_head.weight": "model-00004-of-00004.safetensors",
|
40 |
+
"lm_head.9.linear_head.weight": "model-00004-of-00004.safetensors",
|
41 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
45 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
46 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
47 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
48 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
49 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
50 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
51 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
52 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
53 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
54 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
55 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
56 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
57 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
58 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
59 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
60 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
61 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
62 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
63 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
64 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
175 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
176 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
177 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
178 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
179 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
180 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
181 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
182 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
183 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
184 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
185 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
193 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
194 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
195 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
196 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.26.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.26.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.27.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.27.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.28.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.28.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.29.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.29.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.30.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.30.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
315 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
317 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
318 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
319 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
320 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
321 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
322 |
+
"model.layers.31.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
323 |
+
"model.layers.31.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
325 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
327 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
328 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
329 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
331 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
332 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.layers.32.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"model.layers.32.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
339 |
+
"model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
341 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"model.layers.33.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"model.layers.33.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
348 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
350 |
+
"model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
353 |
+
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
355 |
+
"model.layers.34.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"model.layers.34.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
365 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"model.layers.35.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"model.layers.35.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"model.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"model.layers.36.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"model.layers.36.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
377 |
+
"model.layers.36.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"model.layers.36.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
379 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
380 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
381 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
382 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
383 |
+
"model.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
384 |
+
"model.layers.37.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
385 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
386 |
+
"model.layers.37.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
387 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
388 |
+
"model.layers.37.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
389 |
+
"model.layers.37.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
390 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
391 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
392 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
393 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
394 |
+
"model.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
395 |
+
"model.layers.38.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
396 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
397 |
+
"model.layers.38.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
398 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
399 |
+
"model.layers.38.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
400 |
+
"model.layers.38.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
401 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
402 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
403 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
404 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
405 |
+
"model.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
406 |
+
"model.layers.39.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
407 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
408 |
+
"model.layers.39.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
409 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
410 |
+
"model.layers.39.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
411 |
+
"model.layers.39.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
412 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
413 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
414 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
422 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.40.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
428 |
+
"model.layers.40.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
429 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
430 |
+
"model.layers.40.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
431 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
432 |
+
"model.layers.40.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
433 |
+
"model.layers.40.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
437 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
438 |
+
"model.layers.41.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
439 |
+
"model.layers.41.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
440 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
441 |
+
"model.layers.41.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
443 |
+
"model.layers.41.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
444 |
+
"model.layers.41.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
446 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
447 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
448 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
449 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
450 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
452 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
454 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
456 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
458 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
460 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
462 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
464 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
466 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
468 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
470 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
472 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
473 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
474 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
476 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
477 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
478 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
480 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
482 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
483 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
484 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
485 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
486 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
487 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
488 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
489 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
490 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
491 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
492 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
493 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
494 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
495 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
496 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
497 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
498 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
499 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
500 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
501 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
502 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
503 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
504 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
505 |
+
}
|
506 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<start_of_turn>",
|
4 |
+
"<end_of_turn>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<bos>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<pad>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7da53ca29fb16f6b2489482fc0bc6a394162cdab14d12764a1755ebc583fea79
|
3 |
+
size 17518525
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<mask>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<2mass>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "[@BOS@]",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<unused0>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<unused1>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<unused2>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<unused3>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<unused4>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<unused5>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<unused6>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<unused7>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<unused8>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<unused9>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<unused10>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<unused11>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"19": {
|
158 |
+
"content": "<unused12>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"20": {
|
166 |
+
"content": "<unused13>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"21": {
|
174 |
+
"content": "<unused14>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"22": {
|
182 |
+
"content": "<unused15>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"23": {
|
190 |
+
"content": "<unused16>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"24": {
|
198 |
+
"content": "<unused17>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"25": {
|
206 |
+
"content": "<unused18>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"26": {
|
214 |
+
"content": "<unused19>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"27": {
|
222 |
+
"content": "<unused20>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"28": {
|
230 |
+
"content": "<unused21>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"29": {
|
238 |
+
"content": "<unused22>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"30": {
|
246 |
+
"content": "<unused23>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"31": {
|
254 |
+
"content": "<unused24>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"32": {
|
262 |
+
"content": "<unused25>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"33": {
|
270 |
+
"content": "<unused26>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"34": {
|
278 |
+
"content": "<unused27>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"35": {
|
286 |
+
"content": "<unused28>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"36": {
|
294 |
+
"content": "<unused29>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"37": {
|
302 |
+
"content": "<unused30>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"38": {
|
310 |
+
"content": "<unused31>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"39": {
|
318 |
+
"content": "<unused32>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"40": {
|
326 |
+
"content": "<unused33>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"41": {
|
334 |
+
"content": "<unused34>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"42": {
|
342 |
+
"content": "<unused35>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"43": {
|
350 |
+
"content": "<unused36>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"44": {
|
358 |
+
"content": "<unused37>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"45": {
|
366 |
+
"content": "<unused38>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"46": {
|
374 |
+
"content": "<unused39>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"47": {
|
382 |
+
"content": "<unused40>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"48": {
|
390 |
+
"content": "<unused41>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"49": {
|
398 |
+
"content": "<unused42>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"50": {
|
406 |
+
"content": "<unused43>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"51": {
|
414 |
+
"content": "<unused44>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"52": {
|
422 |
+
"content": "<unused45>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"53": {
|
430 |
+
"content": "<unused46>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"54": {
|
438 |
+
"content": "<unused47>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"55": {
|
446 |
+
"content": "<unused48>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"56": {
|
454 |
+
"content": "<unused49>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"57": {
|
462 |
+
"content": "<unused50>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"58": {
|
470 |
+
"content": "<unused51>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"59": {
|
478 |
+
"content": "<unused52>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"60": {
|
486 |
+
"content": "<unused53>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"61": {
|
494 |
+
"content": "<unused54>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"62": {
|
502 |
+
"content": "<unused55>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"63": {
|
510 |
+
"content": "<unused56>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"64": {
|
518 |
+
"content": "<unused57>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"65": {
|
526 |
+
"content": "<unused58>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"66": {
|
534 |
+
"content": "<unused59>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"67": {
|
542 |
+
"content": "<unused60>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"68": {
|
550 |
+
"content": "<unused61>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"69": {
|
558 |
+
"content": "<unused62>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"70": {
|
566 |
+
"content": "<unused63>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"71": {
|
574 |
+
"content": "<unused64>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"72": {
|
582 |
+
"content": "<unused65>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"73": {
|
590 |
+
"content": "<unused66>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"74": {
|
598 |
+
"content": "<unused67>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"75": {
|
606 |
+
"content": "<unused68>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"76": {
|
614 |
+
"content": "<unused69>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"77": {
|
622 |
+
"content": "<unused70>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"78": {
|
630 |
+
"content": "<unused71>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"79": {
|
638 |
+
"content": "<unused72>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"80": {
|
646 |
+
"content": "<unused73>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"81": {
|
654 |
+
"content": "<unused74>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"82": {
|
662 |
+
"content": "<unused75>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"83": {
|
670 |
+
"content": "<unused76>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"84": {
|
678 |
+
"content": "<unused77>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"85": {
|
686 |
+
"content": "<unused78>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"86": {
|
694 |
+
"content": "<unused79>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"87": {
|
702 |
+
"content": "<unused80>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"88": {
|
710 |
+
"content": "<unused81>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"89": {
|
718 |
+
"content": "<unused82>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"90": {
|
726 |
+
"content": "<unused83>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"91": {
|
734 |
+
"content": "<unused84>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"92": {
|
742 |
+
"content": "<unused85>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"93": {
|
750 |
+
"content": "<unused86>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"94": {
|
758 |
+
"content": "<unused87>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"95": {
|
766 |
+
"content": "<unused88>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"96": {
|
774 |
+
"content": "<unused89>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"97": {
|
782 |
+
"content": "<unused90>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"98": {
|
790 |
+
"content": "<unused91>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"99": {
|
798 |
+
"content": "<unused92>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"100": {
|
806 |
+
"content": "<unused93>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"101": {
|
814 |
+
"content": "<unused94>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"102": {
|
822 |
+
"content": "<unused95>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"103": {
|
830 |
+
"content": "<unused96>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"104": {
|
838 |
+
"content": "<unused97>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"105": {
|
846 |
+
"content": "<unused98>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"106": {
|
854 |
+
"content": "<start_of_turn>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"107": {
|
862 |
+
"content": "<end_of_turn>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"108": {
|
870 |
+
"content": "\n",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"109": {
|
878 |
+
"content": "\n\n",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"110": {
|
886 |
+
"content": "\n\n\n",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"111": {
|
894 |
+
"content": "\n\n\n\n",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"112": {
|
902 |
+
"content": "\n\n\n\n\n",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"113": {
|
910 |
+
"content": "\n\n\n\n\n\n",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"114": {
|
918 |
+
"content": "\n\n\n\n\n\n\n",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"115": {
|
926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"116": {
|
934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"117": {
|
942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"118": {
|
950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"119": {
|
958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"120": {
|
966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"121": {
|
974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"122": {
|
982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"123": {
|
990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"124": {
|
998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"125": {
|
1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"126": {
|
1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"127": {
|
1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"128": {
|
1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"129": {
|
1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"130": {
|
1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"131": {
|
1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"132": {
|
1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"133": {
|
1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"134": {
|
1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"135": {
|
1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"136": {
|
1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"137": {
|
1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"138": {
|
1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"139": {
|
1118 |
+
"content": "▁▁",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"140": {
|
1126 |
+
"content": "▁▁▁",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"141": {
|
1134 |
+
"content": "▁▁▁▁",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"142": {
|
1142 |
+
"content": "▁▁▁▁▁",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"143": {
|
1150 |
+
"content": "▁▁▁▁▁▁",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
},
|
1157 |
+
"144": {
|
1158 |
+
"content": "▁▁▁▁▁▁▁",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": false
|
1164 |
+
},
|
1165 |
+
"145": {
|
1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": false
|
1172 |
+
},
|
1173 |
+
"146": {
|
1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": false
|
1180 |
+
},
|
1181 |
+
"147": {
|
1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": false
|
1188 |
+
},
|
1189 |
+
"148": {
|
1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": false
|
1196 |
+
},
|
1197 |
+
"149": {
|
1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": false
|
1204 |
+
},
|
1205 |
+
"150": {
|
1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": false
|
1212 |
+
},
|
1213 |
+
"151": {
|
1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": false
|
1220 |
+
},
|
1221 |
+
"152": {
|
1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": false
|
1228 |
+
},
|
1229 |
+
"153": {
|
1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": false
|
1236 |
+
},
|
1237 |
+
"154": {
|
1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": false
|
1244 |
+
},
|
1245 |
+
"155": {
|
1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": false
|
1252 |
+
},
|
1253 |
+
"156": {
|
1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": false
|
1260 |
+
},
|
1261 |
+
"157": {
|
1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": false
|
1268 |
+
},
|
1269 |
+
"158": {
|
1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": false
|
1276 |
+
},
|
1277 |
+
"159": {
|
1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": false
|
1284 |
+
},
|
1285 |
+
"160": {
|
1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": false
|
1292 |
+
},
|
1293 |
+
"161": {
|
1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": false
|
1300 |
+
},
|
1301 |
+
"162": {
|
1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": false
|
1308 |
+
},
|
1309 |
+
"163": {
|
1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": false
|
1316 |
+
},
|
1317 |
+
"164": {
|
1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": false
|
1324 |
+
},
|
1325 |
+
"165": {
|
1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": false
|
1332 |
+
},
|
1333 |
+
"166": {
|
1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": false
|
1340 |
+
},
|
1341 |
+
"167": {
|
1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": false
|
1348 |
+
},
|
1349 |
+
"168": {
|
1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": false
|
1356 |
+
},
|
1357 |
+
"169": {
|
1358 |
+
"content": "<table>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": false
|
1364 |
+
},
|
1365 |
+
"170": {
|
1366 |
+
"content": "<caption>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": false
|
1372 |
+
},
|
1373 |
+
"171": {
|
1374 |
+
"content": "<thead>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": false
|
1380 |
+
},
|
1381 |
+
"172": {
|
1382 |
+
"content": "<tbody>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": false
|
1388 |
+
},
|
1389 |
+
"173": {
|
1390 |
+
"content": "<tfoot>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": false
|
1396 |
+
},
|
1397 |
+
"174": {
|
1398 |
+
"content": "<tr>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": false
|
1404 |
+
},
|
1405 |
+
"175": {
|
1406 |
+
"content": "<th>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": false
|
1412 |
+
},
|
1413 |
+
"176": {
|
1414 |
+
"content": "<td>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": false
|
1420 |
+
},
|
1421 |
+
"177": {
|
1422 |
+
"content": "</table>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": false
|
1428 |
+
},
|
1429 |
+
"178": {
|
1430 |
+
"content": "</caption>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": false
|
1436 |
+
},
|
1437 |
+
"179": {
|
1438 |
+
"content": "</thead>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": false
|
1444 |
+
},
|
1445 |
+
"180": {
|
1446 |
+
"content": "</tbody>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": false
|
1452 |
+
},
|
1453 |
+
"181": {
|
1454 |
+
"content": "</tfoot>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": false
|
1460 |
+
},
|
1461 |
+
"182": {
|
1462 |
+
"content": "</tr>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": false
|
1468 |
+
},
|
1469 |
+
"183": {
|
1470 |
+
"content": "</th>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": false
|
1476 |
+
},
|
1477 |
+
"184": {
|
1478 |
+
"content": "</td>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": false
|
1484 |
+
},
|
1485 |
+
"185": {
|
1486 |
+
"content": "<h1>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": false
|
1492 |
+
},
|
1493 |
+
"186": {
|
1494 |
+
"content": "<h2>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": false
|
1500 |
+
},
|
1501 |
+
"187": {
|
1502 |
+
"content": "<h3>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": false
|
1508 |
+
},
|
1509 |
+
"188": {
|
1510 |
+
"content": "<h4>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": false
|
1516 |
+
},
|
1517 |
+
"189": {
|
1518 |
+
"content": "<h5>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": false
|
1524 |
+
},
|
1525 |
+
"190": {
|
1526 |
+
"content": "<h6>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": false
|
1532 |
+
},
|
1533 |
+
"191": {
|
1534 |
+
"content": "<blockquote>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": false
|
1540 |
+
},
|
1541 |
+
"192": {
|
1542 |
+
"content": "</h1>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": false
|
1548 |
+
},
|
1549 |
+
"193": {
|
1550 |
+
"content": "</h2>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": false
|
1556 |
+
},
|
1557 |
+
"194": {
|
1558 |
+
"content": "</h3>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": false
|
1564 |
+
},
|
1565 |
+
"195": {
|
1566 |
+
"content": "</h4>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": false
|
1572 |
+
},
|
1573 |
+
"196": {
|
1574 |
+
"content": "</h5>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": false
|
1580 |
+
},
|
1581 |
+
"197": {
|
1582 |
+
"content": "</h6>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": false
|
1588 |
+
},
|
1589 |
+
"198": {
|
1590 |
+
"content": "</blockquote>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": false
|
1596 |
+
},
|
1597 |
+
"199": {
|
1598 |
+
"content": "<strong>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": false
|
1604 |
+
},
|
1605 |
+
"200": {
|
1606 |
+
"content": "<em>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": false
|
1612 |
+
},
|
1613 |
+
"201": {
|
1614 |
+
"content": "<b>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": false
|
1620 |
+
},
|
1621 |
+
"202": {
|
1622 |
+
"content": "<i>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": false
|
1628 |
+
},
|
1629 |
+
"203": {
|
1630 |
+
"content": "<u>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": false
|
1636 |
+
},
|
1637 |
+
"204": {
|
1638 |
+
"content": "<s>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": false
|
1644 |
+
},
|
1645 |
+
"205": {
|
1646 |
+
"content": "<sub>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": false
|
1652 |
+
},
|
1653 |
+
"206": {
|
1654 |
+
"content": "<sup>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": false
|
1660 |
+
},
|
1661 |
+
"207": {
|
1662 |
+
"content": "<code>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": false
|
1668 |
+
},
|
1669 |
+
"208": {
|
1670 |
+
"content": "</strong>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": false
|
1676 |
+
},
|
1677 |
+
"209": {
|
1678 |
+
"content": "</em>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": false
|
1684 |
+
},
|
1685 |
+
"210": {
|
1686 |
+
"content": "</b>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": false
|
1692 |
+
},
|
1693 |
+
"211": {
|
1694 |
+
"content": "</i>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": false
|
1700 |
+
},
|
1701 |
+
"212": {
|
1702 |
+
"content": "</u>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": false
|
1708 |
+
},
|
1709 |
+
"213": {
|
1710 |
+
"content": "</s>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": false
|
1716 |
+
},
|
1717 |
+
"214": {
|
1718 |
+
"content": "</sub>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": false
|
1724 |
+
},
|
1725 |
+
"215": {
|
1726 |
+
"content": "</sup>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": false
|
1732 |
+
},
|
1733 |
+
"216": {
|
1734 |
+
"content": "</code>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": false
|
1740 |
+
}
|
1741 |
+
},
|
1742 |
+
"additional_special_tokens": [
|
1743 |
+
"<start_of_turn>",
|
1744 |
+
"<end_of_turn>"
|
1745 |
+
],
|
1746 |
+
"bos_token": "<bos>",
|
1747 |
+
"clean_up_tokenization_spaces": false,
|
1748 |
+
"eos_token": "<eos>",
|
1749 |
+
"model_max_length": 1000000000000000019884624838656,
|
1750 |
+
"pad_token": "<pad>",
|
1751 |
+
"sp_model_kwargs": {},
|
1752 |
+
"spaces_between_special_tokens": false,
|
1753 |
+
"tokenizer_class": "GemmaTokenizer",
|
1754 |
+
"unk_token": "<unk>",
|
1755 |
+
"use_default_system_prompt": false
|
1756 |
+
}
|