chujiezheng commited on
Commit
42176fd
·
1 Parent(s): 0afed17

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) fine-tuned on the [CDConv dataset](https://github.com/thu-coai/cdconv). It supports 2-class classification for 2-turn dialogue contradiction detection. Usage example:
2
+
3
+ ```python
4
+ import torch
5
+ from transformers import AutoTokenizer
6
+ from transformers.models.bert.modeling_bert import BertForSequenceClassification
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained('chujiezheng/roberta-base-cdconv')
9
+ model = BertForSequenceClassification.from_pretrained('chujiezheng/roberta-base-cdconv')
10
+ model.eval()
11
+
12
+ turn1 = [
13
+ "嗯嗯,你喜欢钓鱼吗?", # user
14
+ "喜欢啊,钓鱼很好玩的", # bot
15
+ ]
16
+ turn2 = [
17
+ "你喜欢钓鱼吗?", # user
18
+ "不喜欢,我喜欢看别人钓鱼", # bot, we want to identify whether this utterance makes a contradiction
19
+ ] # turn1 and turn2 are not required to be two consecutive turns
20
+ text1 = "[SEP]".join(turn1 + turn2[:1])
21
+ text2 = turn2[1]
22
+
23
+ model_input = tokenizer(text1, text2, return_tensors='pt', return_token_type_ids=True, return_attention_mask=True)
24
+ model_output = model(**model_input, return_dict=False)
25
+ prediction = torch.argmax(model_output[0].cpu(), dim=-1)[0].item()
26
+ print(prediction) # 0 for non-contradiction, 1 for contradiction
27
+ ```
28
+
29
+ This fine-tuned model obtains 75.7 accuracy and 72.3 macro-F1 on the test set.
30
+
31
+ Please kindly cite the [original paper](https://arxiv.org/abs/2210.08511) if you use this model.
32
+
33
+ ```bib
34
+ @inproceedings{zheng-etal-2022-cdconv,
35
+ title={Towards Emotional Support Dialog Systems},
36
+ author={Zheng, Chujie and
37
+ Zhou, Jinfeng and
38
+ Zheng, Yinhe and
39
+ Peng, Libiao and
40
+ Guo, Zhen and
41
+ Wu, Wenquan and
42
+ Niu, Zhengyu and
43
+ Wu, Hua and
44
+ Huang, Minlie},
45
+ booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
46
+ year={2022}
47
+ }
48
+ ```