lukeleeai commited on
Commit
05966ed
1 Parent(s): daa278b

End of training

Browse files
Files changed (1) hide show
  1. README.md +116 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: t5-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - glue
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: t5-base_qnli_dense_epochs-8
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: glue
18
+ type: glue
19
+ config: qnli
20
+ split: validation
21
+ args: qnli
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9269632070291048
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # t5-base_qnli_dense_epochs-8
32
+
33
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1982
36
+ - Accuracy: 0.9270
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 64
58
+ - seed: 0
59
+ - distributed_type: multi-GPU
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 20
63
+ - num_epochs: 8
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.6742 | 0.01 | 50 | 0.6559 | 0.5380 |
70
+ | 0.4309 | 0.02 | 100 | 0.4215 | 0.8433 |
71
+ | 0.4535 | 0.02 | 150 | 0.3441 | 0.8644 |
72
+ | 0.2523 | 0.03 | 200 | 0.2892 | 0.8957 |
73
+ | 0.2616 | 0.04 | 250 | 0.2927 | 0.8986 |
74
+ | 0.2088 | 0.05 | 300 | 0.3608 | 0.8796 |
75
+ | 0.2454 | 0.05 | 350 | 0.2730 | 0.9087 |
76
+ | 0.2824 | 0.06 | 400 | 0.2819 | 0.8900 |
77
+ | 0.308 | 0.07 | 450 | 0.2904 | 0.8966 |
78
+ | 0.2035 | 0.08 | 500 | 0.3073 | 0.8951 |
79
+ | 0.2096 | 0.08 | 550 | 0.2743 | 0.9061 |
80
+ | 0.338 | 0.09 | 600 | 0.2520 | 0.9072 |
81
+ | 0.2484 | 0.1 | 650 | 0.2702 | 0.9030 |
82
+ | 0.2042 | 0.11 | 700 | 0.2476 | 0.9138 |
83
+ | 0.2908 | 0.11 | 750 | 0.2194 | 0.9180 |
84
+ | 0.1985 | 0.12 | 800 | 0.2432 | 0.9169 |
85
+ | 0.19 | 0.13 | 850 | 0.2615 | 0.9112 |
86
+ | 0.2186 | 0.14 | 900 | 0.2289 | 0.9215 |
87
+ | 0.2208 | 0.15 | 950 | 0.2272 | 0.9204 |
88
+ | 0.3049 | 0.15 | 1000 | 0.3508 | 0.8880 |
89
+ | 0.3373 | 0.16 | 1050 | 0.2363 | 0.9105 |
90
+ | 0.2493 | 0.17 | 1100 | 0.2196 | 0.9206 |
91
+ | 0.2359 | 0.18 | 1150 | 0.2160 | 0.9237 |
92
+ | 0.2207 | 0.18 | 1200 | 0.2211 | 0.9217 |
93
+ | 0.2824 | 0.19 | 1250 | 0.2386 | 0.9182 |
94
+ | 0.3605 | 0.2 | 1300 | 0.2548 | 0.9112 |
95
+ | 0.2763 | 0.21 | 1350 | 0.2579 | 0.9149 |
96
+ | 0.2299 | 0.21 | 1400 | 0.2104 | 0.9226 |
97
+ | 0.1787 | 0.22 | 1450 | 0.2280 | 0.9224 |
98
+ | 0.1961 | 0.23 | 1500 | 0.2244 | 0.9233 |
99
+ | 0.1923 | 0.24 | 1550 | 0.2245 | 0.9231 |
100
+ | 0.1844 | 0.24 | 1600 | 0.2735 | 0.9123 |
101
+ | 0.1714 | 0.25 | 1650 | 0.3108 | 0.9121 |
102
+ | 0.2606 | 0.26 | 1700 | 0.2238 | 0.9189 |
103
+ | 0.3326 | 0.27 | 1750 | 0.2363 | 0.9132 |
104
+ | 0.1379 | 0.27 | 1800 | 0.2429 | 0.9094 |
105
+ | 0.2266 | 0.28 | 1850 | 0.2416 | 0.9224 |
106
+ | 0.2654 | 0.29 | 1900 | 0.2277 | 0.9242 |
107
+ | 0.6668 | 0.3 | 1950 | 0.2808 | 0.9092 |
108
+ | 0.1875 | 0.31 | 2000 | 0.1982 | 0.9270 |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.34.1
114
+ - Pytorch 2.0.1+cu117
115
+ - Datasets 2.9.0
116
+ - Tokenizers 0.14.1