thocheat commited on
Commit
4a5ae9c
1 Parent(s): 6d413e4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: v7-fine-tune-wav2vec2-Vietnamese-ARS-demo
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # v7-fine-tune-wav2vec2-Vietnamese-ARS-demo
14
+
15
+ This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vietnamese-250h](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vietnamese-250h) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.2806
18
+ - Wer: 0.2751
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 10
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 10.9724 | 0.34 | 500 | 3.8863 | 1.0 |
52
+ | 3.4322 | 0.69 | 1000 | 2.6994 | 1.0953 |
53
+ | 2.431 | 1.03 | 1500 | 1.6603 | 1.0447 |
54
+ | 1.6436 | 1.37 | 2000 | 0.8842 | 0.7589 |
55
+ | 1.1161 | 1.71 | 2500 | 0.6005 | 0.5565 |
56
+ | 0.8657 | 2.06 | 3000 | 0.4911 | 0.4680 |
57
+ | 0.7653 | 2.4 | 3500 | 0.4501 | 0.4207 |
58
+ | 0.7013 | 2.74 | 4000 | 0.4149 | 0.3994 |
59
+ | 0.6306 | 3.09 | 4500 | 0.4065 | 0.3761 |
60
+ | 0.602 | 3.43 | 5000 | 0.3846 | 0.3682 |
61
+ | 0.5746 | 3.77 | 5500 | 0.3814 | 0.3486 |
62
+ | 0.5199 | 4.12 | 6000 | 0.3753 | 0.3354 |
63
+ | 0.4901 | 4.46 | 6500 | 0.3437 | 0.3228 |
64
+ | 0.4834 | 4.8 | 7000 | 0.3329 | 0.3175 |
65
+ | 0.4553 | 5.14 | 7500 | 0.3257 | 0.3135 |
66
+ | 0.4501 | 5.49 | 8000 | 0.3156 | 0.3077 |
67
+ | 0.4468 | 5.83 | 8500 | 0.3248 | 0.3072 |
68
+ | 0.4078 | 6.17 | 9000 | 0.3174 | 0.3033 |
69
+ | 0.4215 | 6.52 | 9500 | 0.3064 | 0.2959 |
70
+ | 0.4001 | 6.86 | 10000 | 0.3158 | 0.2936 |
71
+ | 0.3983 | 7.2 | 10500 | 0.3022 | 0.2890 |
72
+ | 0.3955 | 7.54 | 11000 | 0.2938 | 0.2890 |
73
+ | 0.381 | 7.89 | 11500 | 0.2893 | 0.2915 |
74
+ | 0.3484 | 8.23 | 12000 | 0.2881 | 0.2835 |
75
+ | 0.3492 | 8.57 | 12500 | 0.2899 | 0.2809 |
76
+ | 0.3825 | 8.92 | 13000 | 0.2857 | 0.2808 |
77
+ | 0.3356 | 9.26 | 13500 | 0.2841 | 0.2789 |
78
+ | 0.3361 | 9.6 | 14000 | 0.2789 | 0.2753 |
79
+ | 0.3353 | 9.95 | 14500 | 0.2806 | 0.2751 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.17.0
85
+ - Pytorch 1.12.1+cu113
86
+ - Datasets 1.18.3
87
+ - Tokenizers 0.12.1